

thinking, forward

IOBoard

NeobotixGmbH

Bedienungsanleitung

1	Einle	tung	1
	1.1	Zu dieser Dokumentation	1
		1.1.1 Symbole und Konventionen	1
			2
	1.2		2
			2
		1.2.2 Haftung	2
			2
2	IOBo	ard	3
	2.1	Technische Daten	3
	2.2	Inbetriebnahme	4
	2.3	Befehlssatz	4
	2.4	CAN-Kommunikation	4
		2.4.1 Adressen	4
		2.4.2 Befehle	5
	2.5	RS-232-Kommunikation	6
	2.6	Abmessungen und Steckerbelegung	6
			6
			8
	2.7	Rechtliche Anmerkungen	0
		2.7.1 EG-Konformitätserklärung	0
		2.7.2 Informationen zu RoHS	1
3	Steck	verbinder 1	2
	3.1	TE Connectivity - HE14	2
	3.2	Würth Elektronik - MPC4	3
	3 3	Würth Flaktronik MPC3	1

KAPITEL 1

Einleitung

1.1 Zu dieser Dokumentation

1.1.1 Symbole und Konventionen

In dieser Dokumentation werden die folgenden Symbole und Hervorhebungen verwendet:

Gefahr: Weist auf eine Gefahrenstelle oder unmittelbar gefährliche Situation hin, die zu schweren Verletzungen bis hin zum Tod führen kann.

Warnung: Weist auf eine Gefahrenstelle oder potentiell gefährliche Situation hin, die zu schweren Verletzungen oder Schäden führen kann.

Achtung: Weist auf Gefahren oder Situationen hin, die zu leichten Verletzungen, Schäden oder anderen negativen Auswirkungen führen kann.

Bemerkung: Kennzeichnet wichtige Informationen, die für den sicheren Betrieb beachtet werden müssen.

Tipp: Gibt hilfreiche Hinweise, die die Arbeit mit dem mobilen Roboter einfacher und effizienter machen.

- Aufzählungen enthalten mehrere Informationen zum gleichen Thema.
- Sie sind, soweit möglich und sinnvoll, nach Priorität geordnet, mit dem jeweils wichtigsten Eintrag ganz oben.
- Aufzählungen erheben keinen Anspruch auf Vollständigkeit, sofern nichts anderes angegeben wurde.

- 1. Handlungsanleitungen sind nummeriert.
- 2. Nummerierte Anleitungen müssen in der gegebenen Reihenfolge befolgt werden.

1.1.2 Weiterführende Informationen

Weitere Informationen, insbesondere zu kundenspezifischen Konfigurationen und Systemen, erhalten Sie bei Auslieferung zusammen mit Ihrem Roboter oder auf Anfrage¹ In den meisten Fällen stehen Ihnen alle Unterlagen zu Ihrem individuellen Roboter auch im Kundenbereich² unserer Website zu Verfügung.

1.2 Rechtliche Anmerkungen

1.2.1 Versionsangabe

Der deutsche Teil dieser Online-Dokumentation ist das Original.

1.2.2 Haftung

Dieses Dokument wurde mit größtmöglicher Sorgfalt verfasst und repräsentiert den Stand der Technik zum Zeitpunkt seiner Erstellung. Fehler und Irrtümer sind jedoch nicht auszuschließen. Bitte informieren Sie Neobotix, sollten Sie solche im Dokument bemerken.

Die Neobotix GmbH ist nicht haftbar für technische oder schriftliche Fehler in diesem Dokument und behält sich das Recht vor, Änderungen seines Inhalts vorzunehmen, ohne diese vorher anzukündigen. Neobotix übernimmt keinerlei Garantie für die in diesem Dokument beschriebenen Produkteigenschaften. Insbesondere ergibt sich aus dem Inhalt kein Anspruch jedweder Art, weder auf Eigenschaften des Produkts noch auf seine Eignung für spezielle Anwendungsfälle. Die Neobotix GmbH kann nicht für Schäden haftbar gemacht werden, die aus der unsachgemäßen Nutzung eines oder mehrerer der beschriebenen Produkte resultieren.

1.2.3 Downloads und weitergehende Informationen

Weitergehende Informationen, Datenblätter und Dokumentationen, auch von weiteren Neobotix-Produkten, finden Sie im Downloadbereich unserer Website: https://www.neobotix-roboter.de/service/downloads.

https://www.neobotix-roboter.de/kontaktdaten

² https://www.neobotix-roboter.de/login

KAPITEL 2

IOBoard

↓ Als PDF herunterladen³

Das Neobotix IOBoard wurde entwickelt, um mobilen Robotern universelle digitale Ein- und Ausgänge sowie zusätzliche Analogeingänge zur Verfügung zu stellen. Alle Ein- und Ausgänge werden von einem integrierten Mikrocontroller verwaltet, der auch die Kommunikation via CAN-Bus oder serieller Schnittstelle (RS-232) zu anderen Geräten übernimmt.

2.1 Technische Daten

• Versorgungsspannung 8 VDC .. 60 VDC, 500 mA max.

³ https://neobotix-docs.de/hardware/de/IOBoard.pdf

KAPITEL 2. IOBOARD 2.2. INBETRIEBNAHME

- Digitale Kommunikationsschnittstellen CAN und RS-232 (19.2 kBaud)
- 16 Digitaleingänge
- 4 Analogeingänge, 0 V .. 5 V
- 12 Digitalausgänge
- 4 Relaisausgänge, max. 2 A, 2 Schließer, 2 Wechsler
- Temperaturbereich -10°C +45°C

2.2 Inbetriebnahme

Das IOBoard wird mit den folgenden Voreinstellungen ausgeliefert:

CAN-Baudrate: 1 MBaud
CAN-Basisadresse: 0x100
Keine CAN-Extended-ID

Das IOBoard ist sofort betriebsbereit. Eine individuelle Konfiguration kann ab Werk nach Absprache mit dem Kunden erfolgen.

2.3 Befehlssatz

Kommando	Wert	Beschreibung
CMD_IOBOARD_CONNECT	0	Verbindungstest ausführen
CMD_IOBOARD_GETDIGIN	1	Daten der Digitaleingänge anfordern
CMD_IOBOARD_SETDIGOUT	2	Daten der Digitalausgänge setzen
CMD_IOBOARD_GETANALOGIN	3	Daten der Analogeingänge anfordern
CMD_IOBOARD_GETALLDATA	9	Alle Eingänge abfragen (digital und analog)

2.4 CAN-Kommunikation

Den Befehlssatz finden Sie unter Befehlssatz (Seite 4).

2.4.1 Adressen

Die Basisadresse ist werksseitig auf 0x100 gesetzt, sofern keine kundenspezifische Konfiguration vorliegt.

Die vom IOBoard benutzten Adressen werden von der Basisadresse berechnet, indem jeweils die folgenden Offsets addiert werden.

Offset zur Basisadresse	Nachricht
+0	Empfangen von Befehlen
+1	Antwort auf CMD_IOBOARD_CONNECT
+2	Antwort auf CMD_IOBOARD_GETDIGIN
+3	Antwort auf CMD_IOBOARD_GETANALOGIN

2.4.2 Befehle

Im Folgenden werden die CAN IDs als Offset zur Basisadresse angegeben, d.h. +3 bedeutet Basisadresse plus 3.

2.4.2.1 CMD_IOBOARD_CONNECT

Mit diesem Kommando kann die Kommunikationsverbindung zum Board getestet werden.

Kommando ID: +0

CMD_CONNECT	0	0	0	0	0	0	0
-------------	---	---	---	---	---	---	---

Antwort ID: +1

CMD_CONNECT	1	2	3	4	5	6	7
-------------	---	---	---	---	---	---	---

2.4.2.2 CMD_IOBOARD_GETDIGIN

Mit diesem Kommando werden die Daten der 16 Digitaleingänge ausgelesen.

Kommando ID: +0

CMD_IOBOARD_GETDIGIN	0	0	0	0	0	0	0
----------------------	---	---	---	---	---	---	---

Antwort ID: +2

CMD_IOBOARD_GETDIGIN	Bits 8-15	Bits 0-7	0	0	0	0	0
----------------------	-----------	----------	---	---	---	---	---

Bachten Sie, dass die Werte der digitalen Eingänge aus elektrischen Gründen invertiert sind: Der Wert 1 zeigt an, dass an dem Eingang keine Spannung anliegt, der Wert 0 zeigt an, dass Spannung anliegt.

2.4.2.3 CMD_IOBOARD_SETDIGOUT

Mit diesem Kommando können die digitalen Ausgänge gesetzt werden:

Port D	8 x Optokoppler-Ausgang
Port G	4 x Optokoppler-Ausgang
Port B	4 x Relaisausgang

Kommando ID: +0

CMD_IOBOARD_SETDIGOU	ГО	Port D	Port G (Bits 4-7), Port B (Bits 0-3)	0	0	0	0
----------------------	----	--------	--------------------------------------	---	---	---	---

Antwort Keine Antwort.

2.4.2.4 CMD_IOBOARD_GETANALOGIN

Mit diesem Kommando werden die Daten der 4 Analogeingänge ausgelesen.

Kommando ID: +0

Antwort ID: +3

MD_IOBOARD_GETANALOGI	low bits 1	low bits 2	low bits 3	low bits 4	high bits	0	0
-----------------------	------------	------------	------------	------------	-----------	---	---

Das *high bits* Byte enthält die zwei hochwertigen Bits für jeden Kanal, in aufsteigender Reihenfolge (Bits 0-1 für Kanal 1 und so weiter).

2.4.2.5 CMD IOBOARD GETALLDATA

Mit diesem Befehl werden sowohl die Digital- als auch die Analogeingänge ausgelesen. Er hat den gleichen Effekt, wie die Digital- und die Analogeingänge separat abzufragen.

Kommando ID: +0

CMD_IOBOARD_GETALLDATA	0	0	0	0	0	0	0

Antwort Die Antwort besteht aus zwei CAN-Nachrichten, die identisch sind zu den Antworten auf die Befehle CMD IOBOARD GETDIGIN und CMD IOBOARD GETANALOGIN.

2.5 RS-232-Kommunikation

Das RS-232-Protokoll ist identisch zur *CAN-Kommunikation* (Seite 4). Gesendet werden Nachrichten von acht Byte Länge ohne Trennzeichen wie LF oder CR.

2.6 Abmessungen und Steckerbelegung

2.6.1 Abmessungen

Bemerkung: Die Widerstandsarrays der digitalen Eingänge müssen entsprechend der verwendeten High-Level-Spannung eingesetzt werden!

5V	330Ω
12V	1 k Ω
24V	3.3 k Ω

Tipp: Das Setzen von Schalter S1 auf ON aktiviert den CAN-Abschlusswiderstand.

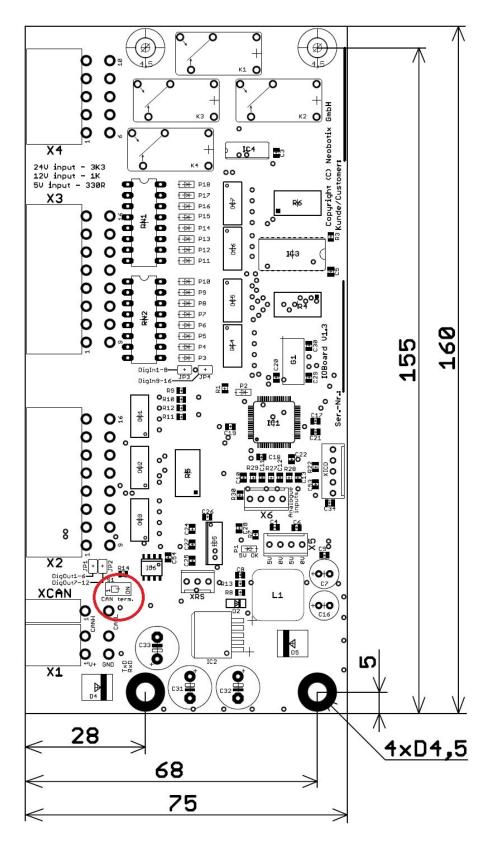


Abb. 1: Abmessungen des IOBoards und Schalter für CAN-Abschlusswiderstand

2.6.2 Steckerbelegung

Eine Übersicht der verwendeten Steckverbinder finden Sie unter Steckverbinder (Seite 12).

2.6.2.1 Stecker X1

Würth Elektronik MPC4, 4-polig

Über diesen Stecker werden die Stromversorgung und der CAN-Bus angeschlossen.

Pin	Beschreibung	
1	Versorgungsspannung	
2	CAN High	
3	Masse	
4	CAN Low	

2.6.2.2 Stecker X2

Würth Elektronik MPC4, 16-polig

An diesem Stecker liegen die gemeinsamen Massen der optoentkoppelten Ein- und Ausgänge sowie die Signalleitungen der Digitalausgänge.

Pin	Beschreibung
1	Gemeinsame Masse Eingänge 2 (Digitaleingang 9 – 16, JP4)
2	Gemeinsame Masse Ausgänge 1 (Digitalausgang 1 – 6, JP1)
3	Digitalausgang 12
4	Digitalausgang 9
5	Digitalausgang 8
6	Digitalausgang 6
7	Digitalausgang 4
8	Digitalausgang 2
9	Gemeinsame Masse Eingänge 1 (Digitaleingang 1 – 8, JP3)
10	Gemeinsame Masse Ausgänge 2 (Digitalausgang 7 – 12, JP2)
11	Digitalausgang 10
12	Digitalausgang 11
13	Digitalausgang 7
14	Digitalausgang 5
15	Digitalausgang 3
16	Digitalausgang 1

Tipp: Durch Setzen von Lötbrücken an JP1 bis JP4 können die Masseanschlüsse der digitalen Ein- und Ausgänge direkt mit dem Masseanschluss der Versorgungsspannung verbunden werden.

2.6.2.3 Stecker X3

Würth Elektronik MPC4, 16-polig

Dieser Stecker führt die Signalleitungen der digitalen Eingänge. Der Status jedes Eingangs wird durch eine LED angezeigt.

Bemerkung: Achten Sie auf korrekte Vorwiderstände!

Pin	Beschreibung
1	Digitaleingang 16
2	Digitaleingang 14
3	Digitaleingang 12
4	Digitaleingang 10
5	Digitaleingang 8
6	Digitaleingang 6
7	Digitaleingang 4
8	Digitaleingang 2
9	Digitaleingang 15
10	Digitaleingang 13
11	Digitaleingang 11
12	Digitaleingang 9
13	Digitaleingang 7
14	Digitaleingang 5
15	Digitaleingang 3
16	Digitaleingang 1

2.6.2.4 Stecker X4

Würth Elektronik MPC4, 8-polig

Dieser Stecker erlaubt den Zugriff auf die vier potentialfreien Relaisausgänge des IOBoards. Alle Kontakte sind elektrisch getrennt und können bis 2 A belastet werden.

Pin	Beschreibung
1	Relais 4: Gemeinsamer Kontakt
2	Relais 4: Öffner
3	Relais 3: Gemeinsamer Kontakt
4	Relais 2: Schließer
5	Relais 1: Schließer
6	Relais 4: Schließer
7	Relais 3: Öffner
8	Relais 3: Schließer
9	Relais 2: Schließer
10	Relais 1: Schließer

2.6.2.5 Stecker X5

TE Connectivity, HE14, 4-polig

An diesem Stecker kann die interne 5V-Spannung des IOBoards abgegriffen werden.

Pin	Beschreibung	
1, 3	Masse	
2, 4	5 V (max. 500 mA)	

2.6.2.6 Stecker X6

TE Connectivity, HE14, 4-polig

An diesen Stecker können vier Analogsignale mit Spannungen von 0 V bis 5 V, bezogen auf die Masse des IOBoards, angeschlossen werden.

Pin	Beschreibung
1	Analogeingang 1
2	Analogeingang 2
3	Analogeingang 3
4	Analogeingang 4

2.6.2.7 Stecker XCAN

Würth Elektronik MPC4, 2-polig

Hier kann der CAN-Bus bei Bedarf zu anderen Geräte weitergeführt werden.

Pin	Beschreibung
1	CAN High
2	CAN Low

2.6.2.8 Stecker XRS

TE Connectivity, HE14, 3-polig

Dieser Stecker bietet Zugriff auf die RS-232-Schnittstelle des IOBoards.

Pin	Beschreibung
1	Masse
2	TxD (IOBoard-Sendeleitung)
3	RxD (IOBoard-Empfangsleitung)

2.7 Rechtliche Anmerkungen

Die allgemeinen rechtlichen Anmerkungen finden Sie unter Rechtliche Anmerkungen (Seite 2).

2.7.1 EG-Konformitätserklärung

Hiermit bestätigt Neobotix, dass das beschriebene Produkt die relevanten EU-Richtlinien erfüllt.

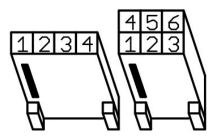
2.7.2 Informationen zu RoHS

Hiermit bestätigt Neobotix, dass das beschriebene Produkt die RoHS-Richtlinien 2011/65/EU (RoHS 2) und 2015/863/EU des Europäischen Parlaments und des Rates zur Beschränkung der Verwendung gefährlicher Stoffe in Elektro- und Elektronikgeräten erfüllt.

KAPITEL 3

Steckverbinder

3.1 TE Connectivity - HE14



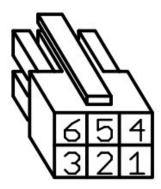
Pole	TE Connectivity	Farnell	RS Components
3-polig, 1-reihig	281838-3	429582	532-333
4-polig, 1-reihig	281838-4	429594	532-349
5-polig, 1-reihig	281838-5	429600	532-355
6-polig, 2-reihig	281839-3	429650	532-406
8-polig, 2-reihig	281839-4	429661	532-412
10-polig, 2-reihig	281839-5	429673	532-428
12-polig, 2-reihig	281839-6	429685	532-434

Crimpkontakte	TE Connectivity	Farnell	RS Components
AWG 28-24	182734-2	429715	532-456

Bei Neobotix-Produkten ist die Pinbelegung der HE14-Stecker wie unten dargestellt.

3.2 Würth Elektronik - MPC4

Für nähere Informationen zum MPC4⁴ konsultieren Sie bitte den Würth Elektronik Onlinekatalog⁵.


Pole (2-reihig)	Würth Elektronik
2	649002113322
4	649004113322
6	649006113322
8	649008113322
10	649010113322
16	649016113322

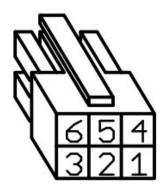
Crimpkontakte	Würth Elektronik
AWG 24-18	64900613722

Bei Neobotix-Produkten ist die Pinbelegung der MPC4-Stecker wie unten dargestellt.

⁴ https://www.we-online.de/katalog/de/em/connectors/wire-to-board/wr_mpc4/5 https://www.we-online.com/de/produkte/bauelemente/uebersicht

3.3 Würth Elektronik - MPC3

Für nähere Informationen zum MPC3⁶ konsultieren Sie bitte den Würth Elektronik Onlinekatalog⁷.


Pole (2-reihig)	Würth Elektronik
4	662004113322
6	662006113322
12	662012113322

Crimpkontakte	Würth Elektronik
AWG 24-20	66200113722

Bei Neobotix-Produkten ist die Pinbelegung der MPC3-Stecker wie unten dargestellt.

⁶ https://www.we-online.de/katalog/de/em/connectors/wire-to-board/wr_mpc3/ ⁷ https://www.we-online.com/de/produkte/bauelemente/uebersicht

