
PlatformPilot Documentation
Release 1.6.2

Neobotix GmbH

Aug 07, 2023

CONTENTS:

1 User Manual 1
1.1 Installation . 1
1.2 Running . 2
1.3 Docker . 4
1.4 Terminal Interface . 6
1.5 Configuration . 6
1.6 User Management . 9
1.7 Tools . 11
1.8 Grid Map . 12
1.9 Road Map . 13
1.10 GTK GUI . 13
1.11 WebGUI . 14
1.12 License . 24
1.13 Changelog . 25

2 Programmer’s Manual 31
2.1 VNX Interface . 31
2.2 JSON-RPC Interface . 35
2.3 HTTP Interface . 39
2.4 Lua Script . 42
2.5 OPC-UA Interface . 49
2.6 ROS Bridge . 52

3 API Reference 55
3.1 Common Datatypes . 55
3.2 Coordinate Systems . 55
3.3 Classes . 56
3.4 Modules . 95
3.5 Topics . 109

Index 113

i

ii

CHAPTER

ONE

USER MANUAL

1.1 Installation

1.1.1 Ubuntu

• Obtain the correct neobotix-pilot-core- debian package for your architechture and Ubuntu version. For
example, the file name for the x86_64 Ubuntu 20.04 package ends with -x86_64-ubuntu-20.04.deb.

• Install the package as follows:

sudo dpkg -i neobotix-pilot-core-*.deb

• Install missing dependencies via:

sudo apt -f install

• The contents of the package should now be installed under /opt/neobotix/pilot-core/.

• If you received a license security dongle and you already attached it, unplug it and attach it again in order for
the installed udev rule to take effect.

• To change the default workspace folder (which is ~/pilot/) set the following environment variable in your ~/.
bashrc:

export PILOT_HOME=/your/custom/path
source ~/.bashrc

• To setup the workspace execute the following script:

sh /opt/neobotix/pilot-core/scripts/pilot_setup.sh /opt/neobotix/pilot-core

This will setup the pilot workspace folder, as selected in the previous step, with default settings.

• Change into the pilot workspace folder. The paths in the following steps will be relative to this location.

• Change the default configuration to match your platform type:

echo /opt/neobotix/pilot-core/config/default/mpo-700/ > config/local/parent

where you replace mpo-700 with your platform type.

• If you received a license security dongle, edit your config/local/LicenseCheck.json file to contain
your license key which you should find printed on the dongle.

• Set a name and serial for your platform in config/local/platform.json.

1

PlatformPilot Documentation, Release 1.6.2

• Optionally set additional custom configuration options in config/local, see Configuration.

• Optionally setup users and passwords, see User Management.

• To enable autostart:

cp /usr/share/applications/Neobotix-PlatformPilot.desktop ~/.config/autostart/

• In addition you can install a desktop launcher as follows:

xdg-desktop-icon install /usr/share/applications/Neobotix-PlatformPilot.desktop

You may need to right click on the icon first and select “Allow Launching” to activate it.

• See Running on how to run PlatformPilot.

1.1.2 Windows

• Execute the neobotix-pilot-core-?-windows10.exe installer.

• The package will be installed to your Profile Folder in C:\Users\?\PlatformPilot\.

• Change into the folder PlatformPilot\bin\config\local. Edit the file parent with a line like this:

../../../config/default/mpo-700/

where you substitute mpo-700 with your platform type.

• If you received a license security dongle, edit your bin\config\local\LicenseCheck.json file to
contain your license key which you should find printed on the dongle.

• Set a name and serial for your platform in bin\config\local\platform.json.

• Optionally set additional custom configuration options in bin\config\local, see Configuration.

• Optionally setup users and passwords, see User Management.

• See Running on how to run PlatformPilot.

1.2 Running

Note: If you received a license security dongle, make sure to have it attached.

You can always execute the supplied binaries directly, but for convenience we provide little helper scripts that take
care of some required command line options.

1.2.1 Pilot

In Windows execute the bin/run_pilot.bat file either in a terminal or by double clicking on it.

In Ubuntu:

cd ~/pilot
./run_pilot.sh

Additional options can be provided to the scripts as such:

2 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

./run_pilot.sh --LocalPlanner.vel_limits.max_trans_vel 0.5
run_pilot.bat --LocalPlanner.vel_limits.max_trans_vel 0.5

Permanent options can be set by writing config files in config/local, see Configuration. For example a file
config/local/LocalPlanner.json:

{
"vel_limits": {

"max_trans_vel": 0.5
}

}

will set the default maximum velocity of the platform to 0.5 m/s.

1.2.2 Simulation

The simulation binary will simulate the kinematics as well as sensor data without accessing any hardware. Otherwise
there is no difference to run_pilot.sh.

In Windows execute the bin/run_pilot_simulation.bat file either in a terminal or by double clicking on it.

In Ubuntu:

cd ~/pilot
./run_pilot_simulation.sh

1.2.3 Replay

To run PlatformPilot in replay mode use the provided script:

cd ~/pilot
./run_pilot_replay.sh

It will try to connect to a running VNX player on /tmp/vnxplayer.sock. Replay mode is used to view what
happened during a recorded drive. Similar to simulation mode there is no hardware access.

1.2.4 Data Recording

To make a data recording use the provided script:

cd ~/pilot
./record_data.sh

The resulting file will be in user/data/.

1.2.5 Parameters

It is possible to override the default configuration by either writing local config files in config/local/ or by
specifying parameters on the command line.

The following configuration options can be set for most executables above:

self_test If to perform a self test at the beginning. Will exit if it fails. (default = true)

1.2. Running 3

PlatformPilot Documentation, Release 1.6.2

auto_shutdown If to automatically shutdown the host machine in case platform is being turned off via the key
switch. (default = true)

with_hardware If hardware modules should be started, ie. hardware is present on this machine and not on a
remote. (default = true)

enable_joystickmng If to enable joystick input. (default = true)

enable_http_server If to enable HTTP server on port 8888. Needed for HTTP API, WebGUI, etc. (default =
true)

enable_taskhandler If to enable the TaskHandler module. (default = true)

enable_movechainhandler If to enable the MovechainHandler module. (default = true)

enable_opcua_server If to enable the vnx.opc_ua.Server module. (default = false)

opcua_proxy_map A map of vnx.opc_ua.Proxy modules to start, [module name => server address].

vnx_proxy_map A map of vnx.Proxy modules to start, [module name => server address].

vnx_server_map A map of vnx.Server modules to start, [module name => server endpoint].

vnx_jrpc_server_map A map of vnx.JRPC_Server modules to start, [module name => server endpoint].

footprint Footprint of the platform as a JSON object, see pilot.Footprint.

platform Static platform information as a JSON object, see pilot.PlatformInfo.

By default the following servers are started:

vnx.Server on .pilot_main.sock Supports connections from the local machine via UNIX domain sockets,
using the native VNX binary protocol. Almost all permissions are granted to clients connecting to this server,
ie. no logins required. A vnx.Proxy is needed to connect. On Linux systems only.

vnx.Server on 0.0.0.0:5555 Supports connections from anywhere via TCP/IP sockets, using the native VNX
binary protocol. Login is required to gain anything more than read-only permissions, see User Management. A
vnx.Proxy is needed to connect.

In general, most applications accept the following command line arguments:

• The -h switch displays a small help message and exits.

• The -d switch increases the debug level of the terminal output

• The -c switch accepts a directory with configuration files. You can specify several directories by repeating the
switch or by providing multiple directories at once. The order of directories matters, they are read from left to
right, potentially overriding previous values.

• Finally, you can set specific config values directly on the command line. See Configuration for details.

1.2.6 Maps

The active Grid Map and Road Map are stored in the ~/pilot/ folder as current_grid_map.grid and
current_road_map.road.

They can either be copied there by hand or uploaded via the GTK GUI.

1.3 Docker

You might run into a situation where you want to run multiple simulation instances of PlatformPilot, for example to
test out a fleet of robots or to work simultaneously on multiple tasks. Hewever, if you just run multiple instances out

4 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

of the box, they will all try to access the same network ports and write to the same log files, which is not going to work
well. You can set up individual configurations to assign each instance its own resources without collisions, but that
requires some work.

To simplify this task we provide a Docker configuration file which will help you to set up a testing environment. If
you are not familiar with Docker please refer to the official documentation: https://docs.docker.com/

1.3.1 Building Container Image

Every neobotix-pilot-core- debian package contains the corresponding Dockerfile which can be easily
extracted from the package.

• Obtain the correct neobotix-pilot-core- debian package for your architechture and Ubuntu version.

• Obtain the Dockerfile either by

1. installing the debian package. Then you can find it in:

/opt/neobotix/pilot-core/scripts/Dockerfile

2. or open the debian package with archiver program of your choice. Inside you will find another archive
called data.tar.*. Open it and navigate to:

/./opt/neobotix/pilot-core/scripts/Dockerfile

• Put the Dockerfile in the same directory where the debian package is located and build the image like this:

docker build -t <image_name> .

• After successful build verify the image by running:

docker images

1.3.2 Running Simulation In The Container

You can run multiple instances of a Docker container from one single Docker image. To run multiple pilot instances
you need to redirect ports in order to access them. In this example four instances are started and the ports for the GTK
GUI and the WebGUI are forwarded:

docker run --rm --name pilot-core-1 -p 5556:5555 -p 81:8888 <image_name>
docker run --rm --name pilot-core-2 -p 5557:5555 -p 82:8888 <image_name>
docker run --rm --name pilot-core-3 -p 5558:5555 -p 83:8888 <image_name>
docker run --rm --name pilot-core-4 -p 5559:5555 -p 84:8888 <image_name>

To stop runnning containers use:

docker stop pilot-core-1
docker stop pilot-core-2
docker stop pilot-core-3
docker stop pilot-core-4

1.3. Docker 5

https://www.docker.com/
https://docs.docker.com/

PlatformPilot Documentation, Release 1.6.2

1.4 Terminal Interface

While running one of the pilot binaries you can, at any time, hit the <Enter> key which interrupts the log output
and gives you a terminal prompt. You can now execute one of several commands. Type it in and press <Enter> to
execute.

Commands that have an output keep the log paused after execution, to give you time to look at it. The log continues
when you press <Enter> again.

The following commands are currently available:

• quit exits the application

• debug [level] changes the level of the output. The bigger the number, the more log messages you get.

• errors outputs the last error messages

• topic [expr] searches all topic names for expr. If there is no exact match, all topics that expr is a prefix
of are shown. If there are none, all matches are shown.

• module [expr] lists all modules that expr matches on. If there is an exact match, it displays more detailed
information for that module.

• grep <expr> restricts terminal output to messages that contain expr.

• journal [expr] does the same as grep but first shows all past log messages that contain expr.

• spy [expr] does the same as dump but without the actual message content.

• dump [expr] outputs the messages on all topics that match expr.

• htop [field] shows the modules with the highest CPU load in a table that refreshes regularly. field can
be avg to change the sorting.

• exec <module>[.method [args...]] and call <module>[.method [args...]] invoke
the given method of the given module with the given arguments. exec waits for the command to finish and
displays the result while call performs an asynchronous call. If no method is given, a list of method signatures
for the module is shown.

While typing, the terminal will provide you with suggestions for the command and possible arguments. Press the
<Tab> key to complete, press it twice to get a list of suggestions. You can also use the up and down arrows to scroll
through the history of past commands.

1.5 Configuration

When you start a command line tool, you can supply it with one or more configuration destinations. The configuration
is written in JSON.

1.5.1 Reading

Hierarchy

The configuration follows a hierarchy that is separated by dots (.) in the names of the keys. The hierarchy is inferred
from the file system and the structure of the JSON in the files.

For example, assume you supply the config destination config/local/ and there is a file config/local/
some/path/Test.json and it contains the following content:

6 Chapter 1. User Manual

https://en.wikipedia.org/wiki/JSON

PlatformPilot Documentation, Release 1.6.2

{
"some_key": {

"other_key": {
"the_answer": 42,
"the_question": ["life", "universe", "everything"]

}
}

}

In this case, the config key some.path.Test.some_key.other_key.the_answer will be read and set to
42 and the key some.path.Test.some_key.other_key.the_question will contain a list of strings as
shown.

A config destination can contain the special file called parent. It should consist of a single line giving a path
(absolute or relative to the current destination) to include. This means the contents of the given destination will be
treated as if they were present in the current destination. Additionally, the parent destination will be read first which is
important for cascading (see below).

Cascading

The structure of the configuration makes it possible (and actually good and common practice) to split a config object
across multiple locations. For example your config destination may have a file Test.json that contains

{ "field_1": 42 }

but also reference a parent directory that also has a file Test.json that contains

{ "field_2": 23 }

In effect, both Test.field_1 and Test.field_2 are correctly read. By default, we use this technique to separate

• configuration specific to an installation (in config/local/ in the pilot home folder), which includes

• configuration specific to a robot model (in config/default/XXX/ in the installation folder), which includes

• generic configuration (in config/default/generic/ in the installation folder).

This makes the configuration easy to maintain.

Given the rules for the hierachy and for parent destinations, it is very much possible to specify the same key multiple
times. In that case the key that is read last overwrites any previous one of the same name. In particular, a
destination always overrides its parent.

Appending

It is also possible to append values to an array, by adding a + to the variable name as such:

{ "array": [1, 2, 3] }
{ "array+": [4, 5, 6] }

The resulting array config value will be [1, 2, 3, 4, 5, 6].

Command line

You can also supply configuration on the command line. For example, to set MyModule.max_velocity to 5,
append --MyModule.max_velocity 5 to the command line.

1.5. Configuration 7

PlatformPilot Documentation, Release 1.6.2

Values are read as JSON objects. Make sure to use the correct quoting according to the shell you use. When setting a
boolean value to true, you can omit the value and just give the key.

Arrays and objects can be provided on the command line as follows:

command --array [1, 2, 3, 4] --object {"field": 1234, "array": ["a", "b", "c"]}

Config keys given at the command line are read as the ultimate last ones, so they override any previous keys with the
same names. This is useful for testing out certain values without constantly having to edit files.

1.5.2 Assignment

While some config keys are read explicitly by the application, most of the assignment happens automagically.

Modules

A module that is started with the name MyModule will automatically be assigned all configuration below the
MyModule. key. From then on it behaves like a class (see below).

Classes

If a configuration key is applied to an instance of a VNX class, the members of the class are assigned the subkeys
where the names match.

For example if you have an object of the class Test below

class Test2 {
string what;
int over;

}

class Test {
string name;
int value;
vector<int> numbers;
Test2 other_one;

}

and you assign it the config

{
"name": "Picard",
"value": 1234,
"numbers": [1, 2, 3, 4],
"other_one": {

"what": "ever",
"over": 9000

}
}

then all the fields get assigned the config key with the matching name. Notice that other_one is another object
which will get the same treatment recursively with the embedded config object.

Fields without a matching config key are default initialized and spare keys without a matching field are silently ignored.

8 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

1.6 User Management

The authentication model is based on users who may or may not have permission to perform certain actions. Without
authentication, by default, only a limited number of actions are available.

Every user has a name and a password which are used for authentication.

1.6.1 Login

Command line tools usually provide the -u <username> switch to provide a user name. Please refer to the docu-
mentation of the respective tool.

Graphical tools usually provide a graphical way of authentication.

1.6.2 Permissions

Most API functions require a certain permission to be executed. If the permission is not held by the user an error is
returned or thrown.

Every user has a set of access roles and every access role has a set of permissions. The permissions of a user consist
of the permissions of their access roles. Mindful assignment to access roles allows for a fine-grained access control in
a multi-user environment.

See vnx.access_role_e for the set of default access roles and their permissions.

1.6.3 Configuration

Available access roles and their sets of permissions can be configured via the config key vnx.authentication.
permissions which is an object with access roles (as strings) as keys and a list of permissions (as strings) as
values.

Users and their access roles can be configured with the key vnx.authentication.users which is a list of user
objects. Note that the passwords for the config map vnx.authentication.passwd are usually kept separately
(in a subdirectory) so that they can be protected from reading and writing.

Here is the default configuration config/default/generic/vnx/authentication.json:

{
"users": [

{
"name": "neo-user",
"access_roles": ["USER"]

},
{

"name": "neo-installer",
"access_roles": ["INSTALLER"]

},
{

"name": "neo-admin",
"access_roles": ["INSTALLER", "ADMIN"]

}
],
"permissions": {

"OBSERVER": [
"READ_CONFIG",

(continues on next page)

1.6. User Management 9

PlatformPilot Documentation, Release 1.6.2

(continued from previous page)

],
"USER": [

"pilot.permission_e.MOVE",
"pilot.permission_e.CHARGE",
"pilot.permission_e.INITIALIZE",
"pilot.permission_e.RECORD_DATA",
"pilot.permission_e.EXECUTE_SCRIPT",
"vnx.addons.permission_e.READ_DIRECTORY",
"vnx.addons.permission_e.FILE_DOWNLOAD",

],
"TASK": [

"VIEW",
"CONST_REQUEST",
"pilot.permission_e.MOVE",
"pilot.permission_e.CHARGE",
"pilot.permission_e.RECORD_DATA",
"pilot.permission_e.RELAY_CONTROL",
"pilot.permission_e.DISPLAY_CONTROL",

],
"INSTALLER": [

"pilot.permission_e.MOVE",
"pilot.permission_e.CHARGE",
"pilot.permission_e.INITIALIZE",
"pilot.permission_e.RECORD_DATA",
"pilot.permission_e.REMOTE_CONTROL",
"pilot.permission_e.RELAY_CONTROL",
"pilot.permission_e.DISPLAY_CONTROL",
"pilot.permission_e.CHANGE_GRIDMAP",
"pilot.permission_e.CHANGE_ROADMAP",
"pilot.permission_e.UPLOAD_SCRIPT",
"pilot.permission_e.EXECUTE_SCRIPT",
"pilot.permission_e.INTERVENE_SCRIPT",
"vnx.addons.permission_e.READ_DIRECTORY",
"vnx.addons.permission_e.FILE_DOWNLOAD",
"vnx.addons.permission_e.FILE_UPLOAD",
"vnx.addons.permission_e.FILE_DELETE",

]
}

}

As can be seen, built-in permissions (of type vnx.permission_e) such as VIEW and READ_CONFIG can be specified
without the full namespace. A permission can also be removed by adding a ! in front of the name: !VIEW.

For more information regarding configuration files see Configuration.

1.6.4 Adding Users

To add new users create a config file config/local/vnx/authentication.json:

{
"users+": [

{
"name": "foo",
"access_roles": ["USER", ...]

},
....

(continues on next page)

10 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

(continued from previous page)

]
}

By removing the + in users+ you can discard the default users which were set in config/default/generic/
vnx/authentication.json.

1.6.5 Passwords

Passwords can be set or changed via the vnxpasswd command line tool, see Tools.

1.7 Tools

There is a collection of command line tools to communicate with a running program instance.

Common command line parameters are:

-n <node> supply a way to connect to the process. It can be a UNIX socket or a network address in the form
host:port.

-u <user> authenticate with the given user name. You will be asked to enter the password before the connection
is made.

On Linux the tools are found in /opt/neobotix/pilot-core/bin/ or /opt/neobotix/
pilot-gtkgui/bin/. On Windows the tools are found in the bin folder.

1.7.1 pilot_execute

To execute a custom Lua Script on the platform:

pilot_execute -n localhost:5555 -u neo-admin -f my_script.lua

Above command will run until the script exits. To return immediately add the -a option.

Requires permission UPLOAD_SCRIPT.

1.7.2 vnxpasswd

To change / set a password:

vnxpasswd -c config/local/ -u neo-admin

1.7.3 vnxservice

To call a method on a module:

vnxservice -n localhost:5555 -u neo-user -x HybridPlanner move_to_station Station1 {
→˓"max_velocity": 0.5}

To get an overview of available methods:

1.7. Tools 11

PlatformPilot Documentation, Release 1.6.2

vnxservice -n localhost:5555 -i HybridPlanner

1.7.4 vnxread

To convert a *.dat, *.grid or *.road file to JSON:

vnxread -f my_road_map.road

1.7.5 vnxgraph

If you have graphviz installed, you can visualize the running modules and their topics.

To create a graph of a running VNX process:

vnxgraph -n localhost:5555 > graph.dot
dot -Tsvg graph.dot > graph.svg

1.8 Grid Map

The Grid Map is an image representing an occupancy grid map, created via a SLAM mapping algorithm. It has two
layers: normal occupancy and reflector occupancy, both consisting of 8-bit data per pixel / cell.

See also: pilot.GridMapData, pilot.OccupancyMapData

12 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

1.9 Road Map

The Road Map is a navigation map created by hand using the GTK GUI. It contains road segments where a platform
should drive on, including a lot of additional parameters that can be set.

1.10 GTK GUI

The PlatformPilot GTK GUI provides a means to create maps, upload / download data to / from a platform, as well as
visualize various data and control the platform.

1.9. Road Map 13

PlatformPilot Documentation, Release 1.6.2

1.11 WebGUI

You can interact with the platform using the web interface. You can access it using a web browser of your choice
(Firefox and Chrome/Chromium are preferred though) by navigating to <robot_ip>:8888.

1.11.1 Toolbar

Toolbar consists of three parts:

App Menu Navigate through the app.

Page title Display information about current page.

Action buttons On every page you will see at least the login / logout button. Other buttons will be explained in the
corresponding section.

1.11.2 Map

Changing Pilot Modes

Navigation

To switch into navigation mode:

14 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

Navigation mode allows for autonomous operation.

If needed initialize the localization first via the Pose Estimate Tool, see below.

Mapping

To create a new Grid Map switch to the mapping mode:

Now you can move the platform around using the hardware joystick.

The new Grid Map will be created and updated while driving around. When the mapping process is finished you can
upload the new map to the platform by clicking the Save button.

Note: Requires permissions of neo-installer or neo-admin when connecting remotely.

Map Update

To update the current Grid Map switch to the map update mode:

The platform needs to be localized before entering this mode.

Note: Requires permissions of neo-installer or neo-admin when connecting remotely.

Set Goal Pose

Left Click / Tap and move to define a new goal pose. Red dot on the icon will indicate this mode is enabled.

Set Goal Station

Left Click / Tap on a map station to set a new goal station. Red dot on the icon will indicate this mode is
enabled.

1.11. WebGUI 15

PlatformPilot Documentation, Release 1.6.2

Cancel Goal

Will abort the current goal and stop immediately.

Pose Estimate Tool

Left Click / Tap and move to define a pose estimate (initialize localization). Red dot on the icon will indicate
this mode is enabled.

Set Pose Tool

In simulation mode it is possible to “teleport” the platform via:

Left Click / Tap and move to define a pose. Red dot on the icon will indicate this mode is enabled.

Data Recording

To start a recording:

Note: The resulting file will be in user/data/.

To stop a recording:

Note: This button is only enabled when a recording is active.

Adjust View

16 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

This mode activates ovelayed controls for zooming and rotating the view. Also the view can be moved around by
Left Click / Tap and move.

Settings

In this context menu you can toggle visibility of various map layers.

Note: The same context menu can be accessed by Right Click / Tap & Hold.

Tip: Displaying Lidar Points and Local Cost Map is CPU intensive. Disable this layers to reduce CPU / GPU usage.

1.11.3 Logs

On this page the last 100 PlatformPilot log messages can be viewed. It is also possible to stop / resume message
polling and filter messages by log level using action buttons.

1.11.4 TaskEditor

Introduction

The TaskEditor offers visual way to create and manage tasks for the PlatformPilots TaskHandler module. It allows
users to generate Lua programs using graphical blocks by dragging and linking them. It also offers easy access to the
PlatformPilots API.

After a little training, the creation of programs is done intuitively. So that even complex sequences of task can be
implemented very fast.

The TaskEditor is build on top of the Blockly library. Further information:

• https://developers.google.com/blockly

• https://github.com/google/blockly/wiki

• https://blockly-demo.appspot.com/static/demos/code/index.html

• https://blockly.games/

• https://blockly-demo.appspot.com/static/tests/playground.html

Toolbox

The toolbox is the side menu from whence the user may drag and drop blocks into the workspace.

There are two types of blocks with and without return value. Blocks without return value can be used directly to build
a program workflow. Blocks with a return value are used as input for other blocks (i.e. variables or parameters).

1.11. WebGUI 17

https://developers.google.com/blockly
https://github.com/google/blockly/wiki
https://blockly-demo.appspot.com/static/demos/code/index.html
https://blockly.games/
https://blockly-demo.appspot.com/static/tests/playground.html

PlatformPilot Documentation, Release 1.6.2

PlatformPilot

The following blocks offer direct access to PlatformPilots API. See Lua Script.

Hardware

read_analog_input
Parameters channel [number]
Returns [number]
Corresponding Lua function read_analog_input()

read_digital_input
Parameters channel [number]
Returns [boolean]
Corresponding Lua function read_digital_input()

set_relay
Parameters channel [number]

state [boolean]
Returns [void]
Corresponding Lua function set_relay()

set_digital_output
Parameters channel [number]

state [boolean]
Returns [void]
Corresponding Lua function set_digital_output()

set_display_text
Parameters text [string]
Returns [void]
Corresponding Lua function set_display_text()

charge
Returns [void]
Corresponding Lua function charge()

start_charging
Returns [void]
Corresponding Lua function start_charging()

stop_charging
Returns [void]
Corresponding Lua function stop_charging()

18 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

reset_motors
Returns [void]
Corresponding Lua function reset_motors()

Information Requests

get_time_sec
Returns [number]
Corresponding Lua function get_time_sec()

get_time_millis
Returns [number]
Corresponding Lua function get_time_millis()

get_time_macros
Returns [number]
Corresponding Lua function get_time_macros()

get_position
Returns [Pose2D]
Corresponding Lua function get_position()

find_closest_station1

Parameters max_distance [number]
position [Pose2D]

Returns [string]
Corresponding Lua function find_closest_station_name()

Note: find_closest_station in Blockly returns the name of the station during in Lua it returns the
MapStation object.

get_battery_remaining
Returns [number]
Corresponding Lua function get_battery_remainig()

is_charging
Returns [boolean]
Corresponding Lua function is_charging()

1 For this blocks to work, you have to insert require('neobotix') to your program. (See require())

1.11. WebGUI 19

PlatformPilot Documentation, Release 1.6.2

Log

log_info
Parameters message [string]
Returns [void]
Corresponding Lua function log_info()

log_warn
Parameters message [string]
Returns [void]
Corresponding Lua function log_warn()

log_error
Parameters message [string]
Returns [void]
Corresponding Lua function log_error()

Modules

require(module_name)

Parameters module_name (String) – Load module defined by module_name.
module_name can be either a file name or a folder name. In the latter case all files in
the folder will be included.

Returns void

call(function_name, {args})

Parameters

• function_name (string) – Call function named function_name.

• args (Array) – args is an array of arguments passed to the function. Use the create
list with block to wrap parameters or use a variable containing either a single parameter
or a list of parameters.

Returns Return value depends on what the function to be called returns.

Movement

move_to_station
Parameters name [string]

options [pilot.goal_options_t]
Returns [void] / [boolean]
Corresponding Lua function move_to_station()

20 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

move_to_position
Parameters position [Pose2D]

options [pilot.goal_options_t]
Returns [void] / [boolean]
Corresponding Lua function move_to_position()

move
Parameters dx [number]

dy [number]
dr [number]
options [pilot.goal_options_t]

Returns [void] / [boolean]
Corresponding Lua function move()

OPC-UA

opc_ua_call
Parameters proxy [string]

object {[number],[string]}
method [string]
args [array]

Returns [variant]
Corresponding Lua function opc_ua_call()

opc_ua_call_global
Parameters proxy [string]

method [string]
args [array]

Returns [variant]
Corresponding Lua function opc_ua_call()

Note: opc_ua_call_global internally calls opc_ua_call and passes nil as the object parameter.

opc_ua_read
Parameters proxy [string]

object {[number],[string]}
variable [string]

Returns [variant]
Corresponding Lua function opc_ua_read()

opc_ua_read_global
Parameters proxy [string]

variable [string]
Returns [variant]
Corresponding Lua function opc_ua_read_global()

1.11. WebGUI 21

PlatformPilot Documentation, Release 1.6.2

opc_ua_write
Parameters proxy [string]

object {[number],[string]}
variable [string]
value [variant]

Returns [boolean]
Corresponding Lua function opc_ua_write()

opc_ua_write_global
Parameters proxy [string]

variable [string]
value [variant]

Returns [variant]
Corresponding Lua function opc_ua_write_global()

node_id
Parameters nsi [number]

id [number]
Returns {[number],[number]}
Corresponding Lua function

node_id
Parameters nsi [number]

name [string]
Returns {[number],[string]}
Corresponding Lua function

User Input

wait_for_joystick
Returns [number]
Corresponding Lua function wait_for_joystick()

wait_for_joystick_button
Parameters button [number]
Returns [void]
Corresponding Lua function wait_for_joystick_botton()

wait_for_digital_input
Parameters channel [number]

state [boolean]
Returns [void]
Corresponding Lua function wait_for_digital_input()

22 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

wait_ms
Parameters period [number]
Returns [void]
Corresponding Lua function wait_ms()

wait_sec
Parameters period [number]
Returns [void]
Corresponding Lua function wait_sec()

wait_min
Parameters period [number]
Returns [void]
Corresponding Lua function wait_min()

wait_hours
Parameters period [number]
Returns [void]
Corresponding Lua function wait_hours()

Core

The following blocks offer access to basic code concepts like variables, logical expressions and loops.

If you are not familiar with programming concepts, please consult the official blockly documentation, which you can
find at

• https://developers.google.com/blockly

• https://github.com/google/blockly/wiki

However, in the following section you will find a description of some important blocks.

Add-ons

Note: This section contains custom blocks provided by Neobotix GmbH.

return()
The return block ends current function and returns a value.

to_string()
The to_string block converts a value of any type to a string.

Variables

Variables can be created in several different ways:

• Some blocks such as count with and for each use a variable and defines its values. A traditional computer science
term for these are loop variables.

1.11. WebGUI 23

https://developers.google.com/blockly
https://github.com/google/blockly/wiki

PlatformPilot Documentation, Release 1.6.2

• User-defined functions (also known as “procedures”) can define inputs, which creates variables that can be used
only within the function. These are traditionally called “parameters” or “arguments”.

• Users may create variables at any time through the “set” block. These are traditionally called “global variables”.
Blockly does not support local variables.

Important blocks

set The set block assigns a value to a variable, creating the variable if it doesn’t already exist.

get The get block provides the value stored in a variable, without changing it.

Dropdown menu

Clicking on a variable’s dropdown symbol (triangle) gives the following menu:

The menu provides the following options.

• the names of all existing variables defined in the program.

• Rename variable... changes the name of this variable wherever it appears in the program. Selecting this
option opens a prompt for the new name.

• Delete the ... variable deletes all blocks that reference this variable wherever it appears in the pro-
gram.

1.12 License

PlatformPilot is individually licensed under the terms agreed-upon with Neobotix GmbH.

1.12.1 Third-party software

PlatformPilot makes use of the following third-party software under their respective licenses. Unless stated other-
wise, the software packages have not been modified by us and can be retrieved from their project homepages and/or
repositories.

• zlib (zlib license)

• libpng (libpng license)

• libjpeg (libjpeg license)

This software is based in part on the work of the Independent JPEG Group.

• CImg (CeCILL-C license)

• LUA (MIT License)

Copyright © 1994-2021 Lua.org, PUC-Rio.

See below for the license text.

• url-cpp (MIT License)

Copyright (c) 2016-2017 SEOmoz, Inc.

24 Chapter 1. User Manual

http://zlib.net/zlib_license.html
http://libpng.org/pub/png/src/libpng-LICENSE.txt
https://jpegclub.org/reference/libjpeg-license/
http://cecill.info/licences/Licence_CeCILL-C_V1-en.txt
https://www.lua.org/license.html
https://github.com/seomoz/url-cpp/blob/master/LICENSE

PlatformPilot Documentation, Release 1.6.2

See below for the license text.

• llhttp (MIT License)

Copyright Fedor Indutny, 2018.

See below for the license text.

• Open62541 (Mozilla Public License Version 2.0)

• Eigen3 (Mozilla Public License 2.0)

• OpenCL headers / OpenCL ICD loader (Apache License)

Copyright (c) 2008-2020 The Khronos Group Inc.

• Several packages by Automy Inc. (MIT License)

Copyright (c) 2021 Automy Inc.

See below for the license text.

1.12.2 License Texts

MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.13 Changelog

1.13.1 Release 1.6

Version 1.6.2 (August 2023)

• Footprint can be changed without reinitialization

• Updated CImg library to 3.2.6

• LocalPlanner target pose rotation fix

1.13. Changelog 25

https://github.com/nodejs/llhttp/blob/master/LICENSE-MIT
https://github.com/open62541/open62541/blob/master/LICENSE
http://eigen.tuxfamily.org/index.php?title=Main_Page#License
https://github.com/KhronosGroup/OpenCL-Headers/blob/master/LICENSE
https://github.com/automyinc/

PlatformPilot Documentation, Release 1.6.2

Version 1.6.1 (June 2023)

• Added tiny versions of Pose2D and LocalPlannerState

• OPCUA: setting dimensions and valuerank of variables

• Fixed doc server path

Version 1.6.0 (May 2023)

• New corporate design

• Support for ArgoDrives

• Extended BatteryState data structure

• Documentation available through internal web server

• OPCUA: writable topic variables

• OPCUA: fixed authentication configuration

• OPCUA: certificate issuer and revocation lists

• Updated open62541 to v1.3.6

• Added PCAN error messages (Windows)

• Integrated key pad into TaskHandler

• New Lua command move_towards

• Docking based on shape matching

• Shape matching

• Fixed Microscan module error on Nanoscan

• Bicycle kinematics

• Support for Ubuntu 22.04

1.13.2 Release 1.5

Version 1.5.0 (August 2022)

• Added example maps

• OPCUA:

– open62541 update to v1.3.2

– OPC_UA_Server custom host name and variables

– open62541 as shared library

– added subscriptions to OPC_UA_Proxy

– more settings for opcua server and proxy

– OPC_UA_Proxy proper disconnect on error and client renewal

– Server authentication

• Added Dockerfile creation

26 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

• GlobalCostMap takes additional cost points

• LUA functions and blocks for map switching

• Implemented map storage in MapServer

• Added some useful polygon methods

• Added areas to map match

• Included radar scan into local costmap

• Added basic aircontrol binary

• Added get_pilot_version method to PilotServer

• Added roadmap adjacency hash

• Added radar scan to virtual scan

• Added default configuration for MP-500

• Setting ulimit automatically

• Node for RelayboardV3

• HttpServer blocking fix

• Added shortcut to access the documentation

• Added remote joystick tool pilot_joystick

• TaskHandler fixed publishing volatile execution state

• Omnidrive kinematics with arbitrary number of drives

• Splitted PowerState and RelayBoardData from SystemState

• Full support for ARM64 (e.g. Jetson Nano)

• Dedicated driver module for ELMO motors

• Fleet manager Tower implemented

• GlobalPlanner using local cost map overlay by default now

• HybridPlanner can skip road map with goal_options_t::planner_mode == FREE_ROAMING

• Terminal output on Windows can use ANSI codes or Win API

• RelayBoardNode retry charging in case no charger detected

• added RelayBoardNode enable_charge_cycling option

• LocalPlanner no more goal shortcuts

1.13.3 Release 1.4

Version 1.4.0 (October 2021)

• LocalPlanner pause() fix for differential to keep on path

• TaskHandler execute_*() functions now have blocking option

• added TaskHandler set_timer_ms functionality

• CanNode automatic re-init in case of persistent motor timeouts

1.13. Changelog 27

PlatformPilot Documentation, Release 1.6.2

• TaskHandler generates random jobid if not specified

• HttpProxy fix for missing LogMsg, ModuleInfo and Event topics

• CanNode fix for timeouts due to blocking publishes

• CanNode fix for timeout feedback loop in homeing procedure

• SerialPort fix for blocking publish

• added PlatformInterface read_analog_input() + read_digital_input() functions

• added TaskHandler read_analog_input() + read_digital_input() functions

• added TaskEditor read_analog_input + read_digital_input blocks

• added TaskEditor map / object support

• fixed TaskEditor display regression when switching views

• Added RoadMapPlanner find_closest_station()

• Added LUA find_closest_station_name()

• Added TaskEditor find_closest_station block (which returns station name)

1.13.4 Release 1.3

Version 1.3.0 (August 2021)

• Added OPC-UA Client/Server certificate support

• Added LUA functions and corresponding TaskEditor blocks:

– is_chargig()

– get_battery_remaining()

– reset_motors()

• Added Event::level to allow sorting by low/high level events.

• wait_for_joystick() waits for activation now

• LaserCalibration now also calibrates sensor X/Y position

• Added RealSense2 support

• LFP battery charge auto cycling between 90 and 100 % (see RelayBoardNode::battery_type config)

• Added SystemState::is_charging

1.13.5 Release 1.2

Version 1.2.0 (June 2021)

• New HttpServer implementation, no longer using libmicrohttpd.

– Supports Server-Sent-Events (SSE), via /api/stream/...

– Deflate response compression (multi-threaded)

– Asynchronous chunked transfers

• localization.status topic is also being recorded now.

28 Chapter 1. User Manual

PlatformPilot Documentation, Release 1.6.2

• New LocalPlanner functions: await_goal(), await_goal_ex(...), cancel_goal_await()

• LocalPlanner::pause() now has an optional bool em_stop parameter to enable emergency stopping.

• OPC-UA write variable support via Proxy::write_variable() and
Proxy::write_object_variable().

• TaskHandler now supports script parameters via execute_file() and execute_program() which
are passed on to the main(...) function in LUA.

• Sending a new goal while driving works as expected now, planners wait for platoform to stop before planning
new path.

• Kinematics_CanNode fix for CAN bus initialization, now attempts to re-initialize until successful.

• New TaskHandler functions: get_time_sec(), get_time_millis(), get_time_micros()

• HttpSession now contains session_timeout as well

• Additional incident reporting for RelayBoard and MPO-700 homing.

• SickMicroscan3 fix for reflector detection

• OPC-UA Proxy authentication support via username and password configs.

• TaskHandler scripts have REQUEST permission now

• USER (neo-user) has INTERVENE_SCRIPT permissions now

1.13.6 Release 1.1

Version 1.1.0 (May 2021)

1.13. Changelog 29

PlatformPilot Documentation, Release 1.6.2

30 Chapter 1. User Manual

CHAPTER

TWO

PROGRAMMER’S MANUAL

2.1 VNX Interface

The native VNX binary protocol allows to communicate with the PlatformPilot in a C++ application, either via TCP/IP,
UNIX socket or a direct intra-procress connection.

The communication is provided via the vnx.Server and vnx.Proxy modules.

2.1.1 Server

To enable a vnx.Server create a config file config/local/vnx_server_map:

[
["TcpServer_1", "0.0.0.0:1234"],
["UnixServer_1", "/tmp/mysocket.sock"]

]

This will start two VNX servers listening on TCP/IP address 0.0.0.0:1234 and UNIX socket /tmp/mysocket.
sock respectively. By default a VNX server is listening on TCP/IP address 0.0.0.0:5555, which requires a login
for most funtionality.

To enable user authentication, which is recommended for TCP/IP servers, create a config file config/local/
TcpServer_1.json:

{
"use_authentication": true,
"default_access": "OBSERVER"

}

This will require a login to gain more than the default_access permissions. If use_authentication is set
to false any user has full permissions and no login is necessary.

2.1.2 Proxy

To run a vnx.Proxy which connects to another VNX server create a config file vnx_proxy_map which is used by
your process:

[
["Proxy_1", "127.0.0.1:5555"],
["Proxy_2", "/tmp/mysocket.sock"]

]

31

PlatformPilot Documentation, Release 1.6.2

The above proxies will be available under the module names Proxy_1 and Proxy_2. To import / export topics and
forward services create a config file for each proxy. For example Proxy_1.json:

{
"import_list": [

"input",
"sensors.raw_data",
"platform.system_state",
"platform.battery_state",
"platform.emergency_state",
"kinematics.drive_state"

],
"export_list": [

"platform.drive_cmd",
],
"forward_list": [

"PlatformInterface"
],
"time_sync": true

}

To gain required permissions a login needs to be performed at runtime:

#include <vnx/vnx.h>
#include <vnx/ProxyClient.hxx>

std::string user;
if(vnx::read_config("user", user)) {

vnx::ProxyClient proxy("Proxy");
proxy.login(user, vnx::input_password("Password: "));

}

2.1.3 Clients

A Client is a way to communicate with a module via (remote) procedure calls.

Synchronization

There are synchronous clients and asynchronous clients. A method call on a synchronous client blocks until the result
arrives. A method call on an asynchronous client returns immediately and gives you the possibility to supply callback
functions that notify you about the result.

Specific Clients

Every module has a synchronous and an asynchronous client. If the module class is called MyModule, the clients are
called MyModuleClient and MyModuleAsyncClient. In order to instantiate them, you also need to know the
runtime name of the module (not the name of the class).

Here is an example on how to use the clients for MyModule that is running under the name MyModule_name to
call its method void do_something(int, string).

#include <package/MyModuleClient.hxx>
#include <package/MyModuleAsyncClient.hxx>

(continues on next page)

32 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

(continued from previous page)

using namespace package;

MyModuleClient sync_client("MyModule_name");
sync_client.do_something(42, "hello");

std::shared_ptr<MyModuleAsyncClient> async_client =
std::make_shared<MyModuleAsyncClient>("MyModule_name");

add_async_client(async_client);
async_client->do_something(42, "hello",

[](void) {
std::cout << "OK" << std::endl;

},
[](const vnx::exception& ex) {

std::cout << "FAIL: " << ex.what() << std::endl;
}

);

The callback functions for asynchronous clients are of the forms void(const T&) (where T is the return type, or
void) and void(const vnx::exception&) respectively. Supplying either of them is optional and defaults to a
null function.

Generic Clients

With a generic client, you can communicate with any module. The handling is similar to the specific case, only this
time you call methods by their name and supply the parameters as a vnx.Object. The names of the method and the
parameters have to match the interface definition.

#include <vnx/vnx.h>

vnx::Object args;
args["number"] = 42;
args["message"] = "hello");

vnx::GenericClient sync_client("MyModule_name");
std::shared_ptr<const vnx::Value> ret = sync_client.call("do_something", args);
std::cout << "OK: " << ret->get_field_by_index(0) << std::endl;

std::shared_ptr<vnx::GenericAsyncClient> async_client =
std::make_shared<vnx::GenericAsyncClient>("MyModule_name");

add_async_client(async_client);
async_client->call("do_something", args,

[](std::shared_ptr<const vnx::Value> ret) {
std::cout << "OK: " << ret->get_field_by_index(0) << std::endl;

},
[](const vnx::exception& ex) {

std::cout << "FAIL: " << ex.what() << std::endl;
}

);

The callback functions are of the form void(std::shared_ptr<const vnx::Value>) and void(const
vnx::exception&) respectively. Supplying either of them is optional and defaults to a null function.

2.1.4 Compiling

Example on how to compile your C++ application:

2.1. VNX Interface 33

PlatformPilot Documentation, Release 1.6.2

g++ -std=c++11 application.cpp -I /opt/neobotix/pilot-core/include \
-L /opt/neobotix/pilot-core/lib -lpilot_core -lvnx_base

/opt/neobotix/pilot-core can also be replaced by /opt/neobotix/pilot-gtkgui, if you have the
GTK GUI installed.

2.1.5 Example

Connecting to the PlatformPilot and sending goals to HybridPlanner.

config/default/vnx_proxy_map:

[["Proxy", ""]]

We do not specify an address in the config above, since we want to give a custom address on the command line later.

config/default/Proxy.json:

{"forward_list": ["HybridPlanner"]}

move_to_stations.cpp:

#include <vnx/vnx.h>
#include <vnx/ProxyClient.hxx>
#include <pilot/HybridPlannerClient.hxx>
using namespace pilot;

int main(int argc, char** argv)
{

std::map<std::string, std::string> options;
options["u"] = "user";
vnx::init("move_to_stations", argc, argv, options);

std::string user;
if(vnx::read_config("user", user)) {

vnx::ProxyClient proxy("Proxy");
proxy.login(user, vnx::input_password("Password: "));

}

HybridPlannerClient planner("HybridPlanner");

goal_options_t goal_options;
goal_options.max_velocity = 0.5;
goal_options.drive_mode = drive_mode_e::STRICT_PATH_FOLLOW;

while(vnx::do_run()) {
try {

planner.move_to_station("Station1");
vnx::log_info() << "Station1 has been reached!";

planner.move_to_station("Station2", goal_options);
vnx::log_info() << "Station2 has been reached!";

const vnx::Hash64 job_id = vnx::Hash64::rand();
planner.move_to_station("Station3", {}, job_id);
vnx::log_info() << "Station3 has been reached! (job " << job_id << ")";

}
(continues on next page)

34 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

(continued from previous page)

catch(const std::exception& ex) {
vnx::log_error() << "move_to_station() failed with: " << ex.what();
break;

}
}
vnx::close();

}

Compiling:

g++ -std=c++11 -o move_to_stations move_to_stations.cpp \
-I /opt/neobotix/pilot-core/include \
-L /opt/neobotix/pilot-core/lib -lpilot_core -lvnx_base

Running:

$./move_to_stations -c config/default/ --Proxy.address ~/pilot/.pilot_main.sock

Proxy.address = "/home/neobotix/pilot/.pilot_main.sock"
Proxy.forward_list = ["HybridPlanner"]
config = ["config/default/"]
vnx_proxy_map = [["Proxy", ""]]
[Proxy] INFO: enable_forward('HybridPlanner', 100, 1000)
[Proxy] INFO: Connected to /home/neobotix/pilot/.pilot_main.sock
[move_to_stations] INFO: Station1 has been reached!
[move_to_stations] INFO: Station2 has been reached!
[move_to_stations] INFO: Station3 has been reached! (job 13373535902967275021)
...

Connecting to .pilot_main.sock avoids having to login with a username and password to be able to move the
platform.

2.2 JSON-RPC Interface

This interface uses the JSON-RPC protocol in version 2.0.

The corresponding proxy module vnx.JRPC_Proxy is similar to the vnx.Proxy and mostly follows the same protocol,
only it wraps its messages into appropriate JSON objects.

2.2.1 Message format

A message in our setting of the JSON RPC protocol may look like this:

{
"jsonrpc": "2.0",
"id": "123some_id456",
"method": "MyModule.some_method",
"params": {

"first": "Hello",
"second": 4321

}
}

Some remarks:

2.2. JSON-RPC Interface 35

https://www.jsonrpc.org/

PlatformPilot Documentation, Release 1.6.2

• The id is optional. If you provide it, you will get a response message, otherwise you will get nothing. This
includes error messages!

• method consists of a module name and its method name, separated by a dot. If you omit the module name (but
keep the dot), the request is directed at the proxy module itself.

The proxy module has a method select_service to assign a module name for the rest of the connection:

{
"jsonrpc": "2.0",
"id": "123some_id456",
"method": ".select_service",
"params": {

"service_name": "MyModule"
}

}

Now you can omit the module name (and the dot) in future requests.

• params is an object indexed by the names of the parameters as defined in the interface of the module. You can
also supply a list instead, although that is not encouraged.

2.2.2 Server

To enable a vnx.JRPC_Server create a config file config/local/vnx_jrpc_server_map:

[
["JRPC_Server", "0.0.0.0:5556"],
...

]

This will start a JSON RPC server that listens on the TCP/IP address 0.0.0.0:5556.

2.2.3 Connecting

Open a TCP connection to the port of the server. You should be greeted with a welcome message (method .
on_remote_connect) that you can safely ignore.

To authenticate use the on_login method of the proxy:

{
"jsonrpc": "2.0",
"method": ".on_login",
"params": {

"name": "username",
"password": "23f/*...*/995"

}
}

where password is a SHA-256 hash of the actual password. On success you should receive a call to .
on_remote_login providing some information on your established session.

2.2.4 Return Values

36 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

Note: You will only receive return values if you supply the id field in your request.

Return values are wrapped inside a success message with the result field holding the actual return value. A suc-
cessful call to RoadMapPlanner.find_station may look like this:

{
"__type": "vnx.JRPC_Success",
"jsonrpc": "2.0",
"id": 5566,
"result": {

"__type": "pilot.MapStation",
"drive_flags": [],
"goal_tolerance": {"__type": "pilot.vector_3f_param_t", "type":

→˓"DEFAULT", "x": {"__type": "pilot.float_param_t", "type": "DEFAULT", "value": 0}, "y
→˓": {"__type": "pilot.float_param_t", "type": "DEFAULT", "value": 0}, "z": {"__type
→˓": "pilot.float_param_t", "type": "DEFAULT", "value": 0}},

"goal_tune_time": {"__type": "pilot.float_param_t", "type": "DEFAULT",
→˓ "value": 0},

"group": "",
"id": 120,
"name": "Station120",
"orientation": -3.13343,
"position": [-0.611983, 2.81928],
"profiles": [],
"tolerance": {"__type": "pilot.float_param_t", "type": "DEFAULT",

→˓"value": 0}
}

}

The result of calling a void method has a null return value:

{
"__type": "vnx.JRPC_Success",
"jsonrpc": "2.0",
"id": 43,
"result": null

}

2.2.5 Errors

Note: You will only receive errors if you supply the id field in your request.

If your request failed, you will get an error response. It contains an error field with an object giving an error code,
a short message and the actual error object.

When the method you called throws an exception, the error will look like this:

{
"__type": "vnx.JRPC_Failure",
"jsonrpc": "2.0",
"id": 43,
"error": {

"__type": "vnx.JRPC_Error",

(continues on next page)

2.2. JSON-RPC Interface 37

PlatformPilot Documentation, Release 1.6.2

(continued from previous page)

"code": 500,
"message": "roadmap station does not exist",
"data": {

"__type": "vnx.InternalError",
"what": "roadmap station does not exist"

}
}

}

This shows an error that you get if you lack a permission to do something:

{
"__type": "vnx.JRPC_Failure",
"jsonrpc": "2.0",
"id": 42,
"error": {

"__type": "vnx.JRPC_Error",
"code": 403,
"message": "permission denied (pilot.permission_e.MOVE)",
"data": {

"__type": "vnx.PermissionDenied",
"what": "permission denied (pilot.permission_e.MOVE)",
"dst_mac": 0,
"method": "pilot.HybridPlanner.set_goal_station",
"permission": "pilot.permission_e.MOVE"

}
}

}

See vnx.JRPC_Error for a list of error codes.

2.2.6 Topics

As with the VNX protocol, subscribing to a topic is done with the enable_export method of the proxy:

{
"jsonrpc": "2.0",
"method":".enable_export",
"params": {

"topic_name": "some.topic"
}

}

Received samples will have the following form:

{
"jsonrpc": "2.0",
"method": "!some.topic",
"params": {

"seq_num": 42,
"value": {"__type": "some.Datatype", "time": 1600000023, "some_more":

→˓"fields"}
}

}

38 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

Notice that we are relaxing the notion of a “method” here: The initial ! makes clear that it actually refers to a topic
and the parameters really just hold the value.

Using the same format in the other direction, you can also publish samples on the named topic (given sufficient
permissions).

2.3 HTTP Interface

The HTTP REST API provides access to almost any functionality of the PlatformPilot via the HTTP protocol.

The HTTP server is enabled by default on port 8888, however it can be disabled by setting enable_http_server
to false.

The REST API is available on the path http://localhost:8888/api/. (replace localhost with your target
machine)

See also HttpProxy.

2.3.1 Login

Some functionality requires special permissions, see User Management.

To gain necessary permissions you need to login to the HTTP server as follows:

curl -I "http://localhost:8888/server/login?user=neo-user&passwd_plain=neobotix"
HTTP/1.1 200 OK
...
Set-Cookie: hsid=7ac1b14c66b6f323-0000d026d3eff249-2d4c9774cd3accb8; Path=/; Max-
→˓Age=86400; SameSite=Strict;

The response will contain a session cookie which can be used as follows:

curl -H "Cookie: hsid=7ac1b14c66b6f323-0000d026d3eff249-2d4c9774cd3accb8" http://
→˓localhost:8888/api/request/...

2.3.2 Services

All modules of the PlatformPilot are available via the path /api/request/.

To get an overview of the available modules:

curl http://localhost:8888/api/request/
["GlobalCostMap/", "GlobalPlanner/", "GridLocalization/", "HybridPlanner/", ...]

The available methods of a module can be queried as follows:

curl http://localhost:8888/api/request/HybridPlanner/
["append_goal", "append_goal_position", "append_goal_positions", "append_goal_station
→˓", ...]

A method can be called as follows:

2.3. HTTP Interface 39

PlatformPilot Documentation, Release 1.6.2

curl -X POST http://localhost:8888/api/request/PilotServer/get_state
{"__type": "pilot.PilotState", ...}

curl -H "Cookie: ..." -X POST -d '{"name": "Station1"}' \
http://localhost:8888/api/request/HybridPlanner/set_goal_station

The parameters of a function are supplied as a JSON object via POST data.

You may need to be logged in to access certain functions, see above.

2.3.3 Topics

Almost all topics of the PlatformPilot are available via the path /api/topic/.

To get an overview of the available topics:

curl http://localhost:8888/api/topic/
["input/", "local_planner/", "navigation/", "platform/", "sensors/", "task_handler/",
→˓"tf/", "tfd/", "vnx/"]

curl http://localhost:8888/api/topic/platform/
["info", "odometry", "pilot_state", "system_state"]

To get the latest sample data of a topic:

curl http://localhost:8888/api/topic/platform/odometry
{"__type": "pilot.Odometry", "time": 1613656049067588, ...}

To get a tree of the lastest sample data of a domain:

curl http://localhost:8888/api/topic/platform
{"info": {"__type": "pilot.PlatformInfo", ...}, ...}

To publish a data sample on a topic:

curl -H "Cookie: ..." -X POST -d '{"topic": "test.topic", "sample": {"__type": "pilot.
→˓Pose2D", ...}}' \

http://localhost:8888/api/request/HttpProxy/publish

Note that a __type field needs to be specified containing the type name of the sample, such as pilot.Pose2D for
example.

2.3.4 Configuration

The current configuration tree can be viewed via the path /api/config/.

To access protected configuration values, a special permission PROTECTED_CONFIG is required, see
vnx.permission_e.

To get an overview of the available config options:

curl http://localhost:8888/api/config/
["GlobalCostMap/", "GlobalPlanner/", "GridLocalization/", "GridMapping/", ...]

curl http://localhost:8888/api/config/GridLocalization/
["broadcast_tf", "confidence_gain", "constrain_threshold", "constrain_threshold_yaw",
→˓"gain_factor", ...] (continues on next page)

40 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

(continued from previous page)

To query a specific config value:

curl http://localhost:8888/api/config/GridLocalization/gain_factor
0.01

To query a sub-tree of the configuration:

curl http://localhost:8888/api/config/GridLocalization
{"broadcast_tf": true, "confidence_gain": 0.01, "constrain_threshold": 0.1,
→˓"constrain_threshold_yaw": 0.2, "gain_factor": 0.01, ...}

To query the entire configuration tree:

curl http://localhost:8888/api/config
{...}

2.3.5 Log

The terminal output log messages are available via the path /api/log/.

Each message is of type vnx.LogMsg.

To get all errors which occured since startup:

curl http://localhost:8888/api/log/errors
[...]

To get all recent messages:

curl http://localhost:8888/api/log/recent
{"1": [...], "2": [...], "3": [...], "4": [...]}

To get recent warnings only:

curl http://localhost:8888/api/log/recent/2
[...]

The log levels are as follows:

• 1 = ERROR

• 2 = WARN

• 3 = INFO

• 4 = DEBUG

Log messages are also written to disk and can be accessed via http://example:8888/user/data/logs/.

2.3.6 Events

A history of events is available via the path /api/events/.

Each entry is of type pilot.Event or any of it’s derived types such as pilot.Incident.

To get a list of recent events:

2.3. HTTP Interface 41

PlatformPilot Documentation, Release 1.6.2

curl http://localhost:8888/api/events/recent
[...]

To get recent error events only:

curl http://localhost:8888/api/events/errors
[...]

The latest events are at the end of the respective list.

2.3.7 Views

For certain data types there are special views available via the path /api/view/.

To get a cost map (see pilot.CostMapData) as a PGN image:

curl "http://localhost:8888/api/view/cost_map?topic=navigation.local_cost_map&
→˓color=true&alpha=128" > local_cost_map.png

To get a grid map (see pilot.OccupancyMapData) as a PGN image:

curl "http://localhost:8888/api/view/occupancy_map?topic=navigation.grid_map&alpha=255
→˓" > grid_map.png

2.4 Lua Script

A Lua script that can be executed by the TaskHandler module must at least have a main function. The default name is
main, so the minimal script is:

function main()
-- do something

end

2.4.1 Command Reference

The following commands are available to Lua scripts through the programming interface.

Commands denoted void return true or false depending on whether the command succeeded. Commands with
a return type either return a value of that type or nil if the command failed.

See https://en.wikipedia.org/wiki/Lua_(programming_language) for more information regarding the Lua script lan-
guage itself.

Movement

The commands in this section take an optional parameter of type pilot.goal_options_t. If not given, the default values
are used.

void move_to_station(string name, goal_options_t options)
Moves the platform to the station named name.

void move_to_position(Pose2D position, goal_options_t options)
Moves the platform to the given position in the map. See pilot.Pose2D.

42 Chapter 2. Programmer’s Manual

https://en.wikipedia.org/wiki/Lua_(programming_language)

PlatformPilot Documentation, Release 1.6.2

void move_to(MapStation station, goal_options_t options)
Moves the platform to the place described by station. It may or may not be a station of the Road Map. See
pilot.MapStation.

void move(double dx, double dy, double dr, goal_options_t options)
Moves the platform in the given direction, as seen from the platform’s point of view (relative to base_link).
See Coordinate Systems. dx and dy are given in meters, dr in rads. The new goal must be within reach, with a
maximum distance depending on configuration, but usually around 1 m.

void move_towards(double dx, double dy, double dr, goal_options_t options)
Same as move(...) but the goal does not have to be in reach but is treated the same as a goal point given by
an absolute position. In turn, the calculated path is not necessarily a straight line, depending on obstacles and
roadmap constraints on the way.

void cancel_goal()
Cancels the current goal (if any) which causes the platform to stop moving and the corresponding move com-
mand to fail. This command can be useful in an event handler.

Maps

Grid maps and road maps are uniquely identified by a pilot.map_info_t object.

void switch_grid_map(map_info_t map_info)
Changes the current grid map to the one described by map_info. The map needs to have been uploaded to the
platform.

void_switch_road_map(map_info_t map_info)
Changes the current road map to the one described by map_info. The map needs to have been uploaded to the
platform.

User Input

int wait_for_joystick()
Waits until any button on the active joystick is pressed and returns the ID of the button. See pilot.JoyData for
the available buttons.

void wait_for_joystick_button(int button)
Waits until the button with ID button is pressed on the active joystick. See pilot.JoyData for the available
buttons.

void wait_for_digital_input(int channel, bool state)
Waits until the digital input channel reaches state state. The digital inputs are enumerated from 0 to 15.

int wait_for_keypad()
Waits until any button on the keypad is pressed and returns an ID for the button (see below).

void wait_for_keypad_button(int button)
Waits until the specified button on the keypad is pressed. button can be any of the following:

0 Info
1 Home
2 Start
3 Stop

2.4. Lua Script 43

PlatformPilot Documentation, Release 1.6.2

Timers

void wait_ms(int period)
Pauses for period milliseconds.

void wait_sec(int period)
Pauses for period seconds.

void wait_min(int period)
Pauses for period minutes.

void wait_hours(int period)
Pauses for period hours.

void set_timer_ms(int period, string callback)
Sets up a periodic timer that repeatedly calls the lua function named callback at the given period.

Hardware

float read_analog_input(int channel)
Reads the voltage of an analog input in [V].

bool read_digital_input(int channel)
Reads the state of a digital input.

void set_relay(int channel, bool state)
Sets the relay with id channel to state state.

void set_digital_output(int channel, bool state)
Sets the digital output with id channel to state state. The digital outputs are enumerated from 0 to 15.

void set_display_text(string text)
Prints text on the first line of the LCD display. There is enough space for 20 characters.

void charge()
Starts the charging process. Fails immediately if no charger is detected. Otherwise blocks until the charging is
either finished or aborted.

void start_charging()
Starts the charging process, i.e. activates the corresponding relay.

void stop_charging()
Stops the charging process, i.e. deactivates the corresponding relay.

Information Requests

int get_time_sec()
Returns the current time stamp in seconds.

int get_time_millis()
Returns the current time stamp in milliseconds.

int get_time_micros()
Returns the current time stamp in microseconds.

Pose2D get_position()
Returns the current position on the map. See pilot.Pose2D.

MapNode find_station(string name)
Finds and returns the node / station called name. See pilot.MapStation and See pilot.MapNode.

44 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

MapStation find_closest_station(double max_distance, Pose2D position)
Returns the map station closest to position in a radius of at most max_distance meters. position
defaults to the current position if known.

string find_closest_station_name(double max_distance, Pose2D position)
Same as find_closest_station(...) but returns the station name or nil.

double get_battery_remaining()
Returns the remaining battery charge as a percentage from 0 to 1.

bool is_charging()
Returns true if charging is in progress.

Log

void log_info(string message)
Generates a log message with priority INFO.

void log_warn(string message)
Generates a log message with priority WARN.

void log_error(string message)
Generates a log message with priority ERROR.

Control Flow

void block()
Pauses execution of the main thread.

Warning: Only use in event handlers!

void unblock()
Resumes execution of the main thread.

Warning: Only use in event handlers!

Builtin Functions

bool auto_charge(string pre_stage1, string pre_stage2, string charge_station, float undock_distance, float
max_velocity)

Automatically docks at a specified charging station, charges the batteries until full and then undocks from the
station.

pre_stage1 is a map station somewhere close (less than 1 m) to the charging station with an orientation close
to the final docking pose. There should still be enough space to rotate fully without hitting the charging station.

pre_stage2 is a map station from where to start the docking process without having to rotate anymore. There
should be about 10 to 20 cm of space between the contacts at this position.

charge_station is a map station where the platform makes contact with the charging station. It should be
specified very precisely, within a few mm of accuracy.

undock_distance is the amount of distance to move backwards after finishing the charging process. The
default is 0.25 m. Make sure the robot is allowed to move this much backwards, in case of a differential

2.4. Lua Script 45

PlatformPilot Documentation, Release 1.6.2

platform without a second laser scanner. max_velocity is the maximum velocity in [m/s] with which to
dock and undock. The default is 0.05 m/s.

Returns true if successful, false otherwise.

A require 'neobotix' is needed to access this function in Lua script. Permissions MOVE and CHARGE
are required, see pilot.permission_e.

void reset_motors()
Attempts to re-activate motors (clears any latched erros). Same action as when releasing EM stop.

A require 'neobotix' is needed to access this function in Lua script. Permission MOVE is required, see
pilot.permission_e.

OPC-UA Functions

UA node ids are specified in Lua via an array of two values. Numeric and string node ids are supported as follows:
{0, 1337} or {1, "MyObject"}.

A require 'neobotix' is needed to access these functions in Lua script.

Variant opc_ua_call(string proxy, pair<ushort, Variant> object, string method, vector<Variant> args)
Performs an OPC-UA call via the specified proxy and returns the result of it.

proxy is the name of a running vnx.opc_ua.Proxy module, see opcua_proxy_map.

object is an optional UA node id of the object for which to call the method. Can be set to nil in order to call
a global method.

method is the method name (OPC-UA browse name).

args is an array of function parameters.

In case of failure nil or false is returned, depending on if the method has a return value (nil) or not (false).
In case of multiple return values an array is returned.

Variant opc_ua_read(string proxy, pair<ushort, Variant> object, string variable)
Reads an OPC-UA variable via the specified proxy.

proxy is the name of a running vnx.opc_ua.Proxy module, see opcua_proxy_map.

object is a UA node id of the object containing the variable. Setting it to nil is equivalent to calling
opc_ua_read_global.

variable is the variable name (OPC-UA browse name).

Returns the value read, or nil in case of failure.

Variant opc_ua_read_global(string proxy, pair<ushort, Variant> variable)
Reads a global OPC-UA variable via the specified proxy.

proxy is the name of a running vnx.opc_ua.Proxy module, see opcua_proxy_map.

variable is a UA node id of a global variable.

Returns the value read, or nil in case of failure.

bool opc_ua_write(string proxy, pair<ushort, Variant> object, string variable, Variant value)
Writes a value to an OPC-UA variable via the specified proxy.

proxy is the name of a running vnx.opc_ua.Proxy module, see opcua_proxy_map.

object is a UA node id of the object containing the variable. Setting it to nil is equivalent to calling
opc_ua_write_global.

46 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

variable is the variable name (OPC-UA browse name).

value is the value to be written.

Returns true on success, false in case of failure.

bool opc_ua_write_global(string proxy, pair<ushort, Variant> variable, Variant value)
Writes a value to a global OPC-UA variable via the specified proxy.

proxy is the name of a running vnx.opc_ua.Proxy module, see opcua_proxy_map.

variable is a UA node id of a global variable.

value is the value to be written.

Returns true on success, false in case of failure.

Advanced

Variant execute(string module, string method, Object params)
Executes a function method of the module module. The parameters are specified as key-value pairs in
params. If the method does not take parameters, params can be omitted.

If method does not have a return type, the command returns true or false, depending on whether it suc-
ceeded. If method does have a return type, either a value of that type is returned or nil on failure.

See vnx.Variant and vnx.Object.

Warning: This command allows almost unlimited access to the functionality of PlatformPilot. However, it
also allows you to leave the boundaries of safe operation and must therefore be considered dangerous.

2.4.2 Event Handlers

The following functions, if defined in your script, will be called upon specific events. Events are queued and the next
event handler will only be called after the current one finished.

Be aware that the calls happen asynchronously to the main thread. The two executions run in parallel while abiding to
Lua’s cooperative multithreading model. You can use the block() and unblock() functions to avoid multithread-
ing issues.

void on_em_stop()
Is executed when the emergency stop button is pushed.

void on_scanner_stop()
Is executed when the scanner emergency stop is triggered.

void on_em_reset()
Is executed when a previous emergency situation (button and/or scanner) is resolved and the platform can move
again.

void on_joystick_button_pressed(int button)
Is executed when the joystick button with ID button changes its state from not pressed to pressed.

void on_joystick_button_released(int button)
Is executed when the joystick button with ID button canges its state from pressed to not pressed.

void on_keypad_button_pressed(int button)
Is executed when the specified keypad button changes its state from not pressed to pressed. For the available
button IDs see above.

2.4. Lua Script 47

https://en.wikipedia.org/wiki/Cooperative_multitasking

PlatformPilot Documentation, Release 1.6.2

void on_keypad_button_released(int button)
Is executed when the specified keypad button changes its state from pressed to not pressed. For the available
button IDs see above.

void on_digital_input_on(int channel)
Is executed when the digital input channel changes its state from off to on.

void on_digital_input_off(int channel)
Is executed when the digital input channel changes its state from on to off.

void on_battery_low()
Is executed when the battery drops below a low level.

void on_battery_critical()
Is executed when the battery drops below a critical level.

2.4.3 Examples

Move to stations in the Road Map in a loop:

function main()
while true do

move_to_station("Station4");
move_to_station("Station9");
move_to_station("Station11");
wait_ms(1000);

end
end

Move randomly to any of the specified stations in a loop, abort in case of failure, stop when the Y button on the joystick
is pressed:

function odyssey(stations)
repeat

wait_ms(1000);
index = math.random(1, #stations)

until not move_to_station(stations[index])
end

function on_joystick_button_pressed(button)
if button == 3 then

cancel_goal()
end

end

function main()
odyssey({"Station20", "Station10", "Station12", "Station14", "Station1"})

end

Dock to a charging station using special parameters:

move_to_station("ChargeStation", {
max_velocity = 0.1,
drive_flags = {"IGNORE_FOOTPRINT", "DISABLE_ROTATION"}

})

Undock from a charging station using a relative move command with special parameters:

48 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

move(-0.25, 0, 0, {
max_velocity = 0.1,
drive_flags = {"IGNORE_FOOTPRINT", "DISABLE_ROTATION"}

})

Using the built-in auto_charge(...) function to dock, charge and undock:

require 'neobotix'

function main()
auto_charge("PreStage1", "PreStage2", "ChargeStation", 0.25, 0.05);

end

Calling an OPC-UA method:

require 'neobotix'

function main()
ret = opc_ua_call("OPC_UA_Proxy", {1, "vnx.process"}, "get_name")
log_warn(ret) --> "pilot_main"
ret = opc_ua_call("OPC_UA_Proxy", {1, "HybridPlanner"}, "set_goal_stations", {

{"Station4", "Station3", "Station2"}
})

end

With opcua_proxy_map set to [["OPC_UA_Proxy", "opc.tcp://127.0.0.1:4840"]] and
enable_opcua_server set to true.

Reading an OPC-UA variable:

require 'neobotix'

function main()
ret = opc_ua_read("OPC_UA_Proxy", {0, 2253}, "ServerArray")
log_warn(ret) --> ["urn:open62541.server.application"]

end

With opcua_proxy_map set to [["OPC_UA_Proxy", "opc.tcp://127.0.0.1:4840"]] and
enable_opcua_server set to true.

2.5 OPC-UA Interface

The OPC-UA interface is provided by the vnx.opc_ua.Server and vnx.opc_ua.Proxy modules.

They allow to access internal modules via OPC-UA method calls, as well as call methods on another OPC-UA server
via a Lua Script for example.

2.5.1 Server

To enable the vnx.opc_ua.Server set the following config option:

cd ~/pilot
echo true > config/local/enable_opcua_server

2.5. OPC-UA Interface 49

PlatformPilot Documentation, Release 1.6.2

The server will listen on the address opc.tcp://0.0.0.0:4840. The port 4840 is the default port for OPC-UA
but you can also configure a different port.

The server module is called OPC_UA_Server, so it can be configured as usual by a config file config/local/
OPC_UA_Server.json.

Exports

• Pilot modules and their methods are advertised by the server as OPC-UA services. The methods can be
called according to the OPC-UA specification. The list of exported services is given by the config key
export_services.

• Pilot topics are advertised as OPC-UA variables and continually updated whenever a new value is published.
The topic variables are writable. An external write operation to a variable results in a publish on the cor-
responding topic, if the user has sufficient privileges. The list of exported topics is given by the config key
export_topics.

To expand any of these lists, put a snippet like this in the configuration file:

{
"export_services+": [

"AnotherModule",
...

],
"export_topics+": [

"another.topic",
...

]
}

In order to replace any of the lists, omit the respective + character.

Security

The OPC-UA server supports encrypted communication. To enable it, you have to create or obtain a certificate and
put the path in the configuration. You should also consider revisiting the key security_policies and adjust it
to your needs. For accepting clients, the server uses trust list verification. Client certificates that should be accepted
must be given by the the trust_list parameter.

{
"certificate_file": "/some/path/to/server_cert.der",
"private_key_file": "/some/path/to/server_key.der",
"security_policies": [

"NONE",
"BASIC_256_SHA_256",
"AES_128_SHA_256_RSA_OAEP"

],
"trust_list": [

"/some/path/to/client_cert.der"
]

}

50 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

2.5.2 Proxy

To run a vnx.opc_ua.Proxy which connects to another OPC-UA server create the following config file config/
local/opcua_proxy_map:

[
["OPC_UA_Proxy_1", "opc.tcp://127.0.0.1:4840"],
...

]

The above proxy will be available unter the module name OPC_UA_Proxy_1, see Lua Script for examples on how
to use it.

As usual, the module can be configured by a config file config/local/OPC_UA_Proxy_1.json.

Security

You can configure encrypted communication of the Proxy module. First obtain or generate a certificate and put the
path in the configuration file. You should also consider chooosing a reasonable value for the key security_mode.
For connection to a server, the Proxy uses trust list verification. Server certificates that should be accepted must be
given by the trust_list parameter.

{
"certificate_file": "/some/path/to/client_cert.der",
"private_key_file": "/some/path/to/client_key.der",
"security_mode": "SIGN_AND_ENCRYPT",
"trust_list": [

"/some/path/to/server_cert.der"
]

}

2.5.3 Certificates

To create self-signed certificates for the server and the proxy side, use the script provided by the open62541 project
here as follows:

python create_self-signed.py -k 4096 -c server -u urn:open62541.server.application
python create_self-signed.py -k 4096 -c client -u urn:open62541.client.application

The -u switch sets the application URI that must match the one configured in the module. The values given here are
the defaults.

2.5.4 Data Types

Primitive data types are directly mapped to their OPC-UA counter parts, such as int to INT32, float to FLOAT,
etc. string is directly mapped to a OPC-UA STRING. Arrays of said types are directly mapped to OPC-UA arrays.

Anything else will be converted to JSON and transported via a LocalizedText object, with the locale set to
JSON.

2.5. OPC-UA Interface 51

https://github.com/open62541/open62541/tree/c95fe0f2e0f0433763a23c01958fbdb876e84250/tools/certs

PlatformPilot Documentation, Release 1.6.2

2.6 ROS Bridge

The ROS Bridge allows to integrate PlatformPilot into a ROS environment, such that it is possible to control the
platform via ROS as well as visualize all data in RViz.

2.6.1 Installation

It is assumed that a ROS workspace has already been setup on the platform’s PC, for example ~/ros_workspace/.

To install the ROS Bridge:

cd ~/ros_workspace/src/
git clone https://github.com/neobotix/pilot-ros-bridge.git
cd ~/ros_workspace/
catkin_make

The package depends on an already installed neobotix-pilot-core or neobotix-pilot-gtkgui package.

2.6.2 Running

To run the ROS bridge on the platform:

source ~/ros_workspace/devel/setup.bash
roslaunch pilot_ros_bridge mpo_700.launch

Replace mpo_700.launch with mpo_500.launch or mp_400.launch, depending on your platform.

It is also possible to run the ROS bridge on another PC, by adapting the pilot_node param in the launch file:

<param name="pilot_node" type="str" value="192.168.0.50:5555"/>

Replace 192.168.0.50 with the actual IP address of the platform.

In addition you can disable user authentication on the TCP server to allow for all functionality via the ROS Bridge. To
do this create a config file config/local/TcpServer.json:

{
"use_authentication": false

}

This is only necessary when running the ROS Bridge on another PC.

2.6.3 Topics

The following topics are enabled on the ROS bridge by default. You can add more by adapting the config file config/
default/generic/Pilot_ROS_Bridge.json in pilot-ros-bridge.

Export

52 Chapter 2. Programmer’s Manual

PlatformPilot Documentation, Release 1.6.2

"export_map": [
["platform.odometry", "/odom"],
["sensors.laser_scan.lidar_1", "/lidar_1/scan"],
["sensors.laser_scan.lidar_2", "/lidar_2/scan"],
["sensors.filtered_scan.lidar_1", "/lidar_1/scan_filtered"],
["sensors.filtered_scan.lidar_2", "/lidar_2/scan_filtered"],
["kinematics.drive_state", "/drives/joint_states"],
["mapping.grid_map", "/mapping/map"],
["mapping.grid_map_tile", "/mapping/map_tile"],
["mapping.grid_map_tile_ref", "/mapping/map_tile_ref"],
["navigation.grid_map", "/map"],
["navigation.grid_map_tile", "/map_tile"],
["navigation.map_pose", "/map_pose"],
["navigation.map_particles", "/particlecloud"],
["navigation.road_map", "/road_map"],
["navigation.global_path", "/global_path"],
["navigation.local_path", "/local_path"],
["navigation.local_cost_map", "/local_cost_map"],
["navigation.local_cost_map_overlay", "/local_cost_map_overlay"],
["navigation.global_cost_map", "/global_cost_map"],
["navigation.global_cost_map_overlay", "/global_cost_map_overlay"],
["local_planner.target_pose", "/local_planner/target_pose"],
["local_planner.predicted_pose", "/local_planner/predicted_pose"]

]

Import

"import_map": [
[["/cmd_vel", "geometry_msgs/Twist"], "platform.velocity_cmd"],
[["/initialpose", "geometry_msgs/PoseWithCovarianceStamped"], "navigation.

→˓initial_pose"],
[["/move_base_simple/goal", "geometry_msgs/PoseStamped"], "navigation.

→˓new_goal_pose"]
]

2.6. ROS Bridge 53

PlatformPilot Documentation, Release 1.6.2

54 Chapter 2. Programmer’s Manual

CHAPTER

THREE

API REFERENCE

3.1 Common Datatypes

void empty space

bool 8-bit boolean (default = false)

char 8-bit signed integer (default = 0)

uchar 8-bit unsigned integer (default = 0)

short 16-bit signed integer (default = 0)

ushort 16-bit unsigned integer (default = 0)

int 32-bit signed integer (default = 0)

uint 32-bit unsigned integer (default = 0)

long 64-bit signed integer (default = 0)

ulong 64-bit unsigned integer (default = 0)

float 32-bit floating point number (default = 0)

double 64-bit floating point number (default = 0)

string UTF-8 string (default = “”)

vector<T> A list of values of type T. (default = [])

optional<T> An optional value of type T. (default = null)

set<t> An ordered set of values of type T. (no duplicates)

map<K, V> An ordered map with key type K and value type V. (no duplicate keys)

pair<K, V> A pair of values of type K and V respectively.

T* A value of type T or any derived type, or null. (default = null)

3.2 Coordinate Systems

Below are the most common coordinate systems used. In addition to those each sensor usually has its own coordinate
system too.

Coordinate positions are always measured in SI units, i.e. meters for distances and rads for angles. Velocities are
measured in m/s and rad/s.

55

PlatformPilot Documentation, Release 1.6.2

3.2.1 Base Link (base_link)

The platform’s own coordinate system, usually the center of mass. X points forward, Y points to the left and Z points
upwards. The internal name is base_link.

3.2.2 Odometry (odom)

This is an arbitrary coordinate system with its origin at the starting position (at the time of power on) of the platform. X
and Y form the plane of movement, while Z is pointing upwards and aligned with gravity. Usually there is no motion
in Z direction, except when a roll and pitch sensor is installed. The internal name is odom.

3.2.3 Map (map)

This is the coordinate system of the currently used Grid Map and Road Map. Usually the Grid Map is created first and
its origin is the starting position of where the map was created initially. X and Y form the plane of movement, while
Z is pointing upwards and aligned with gravity. The internal name is map.

3.3 Classes

3.3.1 basic.Transform3D

Class

Transform3D represents a 2D/3D transformation from a specified coordinate system to another. It can be described by
a 4x4 matrix that transforms a 3D vector from the source coordinate system to the target coordinate system.

Fields

long time
POSIX timestamp in [usec].

string frame
Source coordinate system name.

string parent
Target coordinate system name.

Matrix4d matrix
The transformation matrix, such that left multiplying a vector transforms it from the source coordinate sys-
tem frame to the target coordinate system parent. For example: target = matrix * [x, y, z, 1]^T. See
math.Matrix4d.

3.3.2 math.Matrix4d

A 4x4 double (64-bit float) matrix, usually a 3D transformation matrix.

56 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.3.3 math.Vector2d

A 2D double (64-bit float) vector, usually a (x, y) position. Mathmatically a column vector, in JSON an array of 2
numbers.

3.3.4 math.Vector3d

A 3D double (64-bit float) vector, usually (x, y, z) for a 3D position, or (x, y, yaw) for a 2D pose. Mathmatically a
column vector, in JSON an array of 3 numbers.

3.3.5 math.Vector3f

A 3D float vector, usually (x, y, z) for a 3D position, or (x, y, yaw) for a 2D pose. Mathmatically a column vector, in
JSON an array of 3 numbers.

3.3.6 pilot.ActiveIncidents

Class

Contains the list of currently active incidents, which is periodically published on topic platform.
active_incidents.

Fields

long time
POSIX timestamp [usec]

vector<event_t> events
List of active incidents, see pilot.event_t.

3.3.7 pilot.BatteryState

Class

BatteryState contains information regarding the platform’s batteries.

Inherits from pilot.Sample.

Fields

float remaining
Percentage of charge remaining, from 0 to 1.

float voltage
Battery voltage in [V].

float current
Battery current, positive = charging, in [A].

float temperature
Battery temperatue in [C].

3.3. Classes 57

PlatformPilot Documentation, Release 1.6.2

battery_type_e type
Battery type, see pilot.battery_type_e.

3.3.8 pilot.Beacon

Class

Status updates to be published by robots.

Inherits from pilot.RobotInfo.

Fields

long time
POSIX timestamp [usec]

3.3.9 pilot.CostMapData

Class

A map representing the navigation cost based on the proximity to walls and other obstacles.

Inherits from pilot.GridMapData.

Fields

static const uchar PROHIBITED = 254

static const uchar UNKNOWN = 255

float cost_scale
obstacle distance scale [m]

distance = (1 - (cost / 200)) * cost_scale

Image8 cost

• 0 to 200 = cost

• 200 = wall

• > 200 = same as occupancy map

Methods

ImageF32 to_float() const
convert to float format (0 to 1)

Image8 to_rgba_image(int alpha) const
for visualization (with color)

Image8 to_rgba_mono_image(int alpha) const
for visualization (just grayscale)

static Vector4uc to_rgba(int value, int alpha)
convert occupancy to RGBA

58 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

static Vector4uc to_rgba_mono(int value, int alpha)
convert occupancy to RGBA mono

3.3.10 pilot.EmergencyState

Class

EmergencyState contains information regarding the platform’s emergency systems.

Inherits from pilot.Sample.

Fields

em_stop_state_e state
Current EM Stop state, see pilot.em_stop_state_e.

bool is_button_stop
If an emergency stop button has been pressed.

bool is_scanner_stop
If a scanner stop was triggered.

3.3.11 pilot.Event

Class

Generic event type, as published on topic platform.events for example.

Fields

long time
POSIX timestamp [usec]

event_t event
Event data, see pilot.event_t.

Object info
Additional information regarding the event, see vnx.Object.

3.3.12 pilot.ExecutionHistory

Class

A history of recent execution states of the TaskHandler.

Fields

list<ExecutionState *> history

3.3. Classes 59

PlatformPilot Documentation, Release 1.6.2

3.3.13 pilot.ExecutionState

Class

ExecutionState contains information about the current state of the TaskHandler.

Inherits from pilot.Sample.

Fields

execution_state_e status
Current execution state, see pilot.execution_state_e.

Hash64 jobid
Current program execution id. See vnx.Hash64.

string program_name
Name of the running program.

Task *task
Current task being executed, if any. See pilot.Task.

vector<StackFrame> stack
Execution stack, most recent first. See pilot.StackFrame.

long time_started
POSIX time stamp when program was started in [usec].

long time_ended
POSIX time stamp when program has finised in [usec], zero otherwise (ie. still running).

bool is_minor
True if current task is nothing major, for example log message output, etc.

3.3.14 pilot.Footprint

Class

Footprint describes the space needed by a platform, including the safety scanner fields with some additional padding.

Fields

vector<Vector2d> points
List of 2D (x, y) [m, m] points in base_link coordinates that form a polygon representing the footprint. The
points should be specified either in clockwise or anti-clockwise direction.

See Coordinate Systems.

3.3.15 pilot.GridMapData

Class

Base class of pixel based world maps.

Inherits from pilot.Sample.

60 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

Fields

string name

long last_modified
timestamp [usec]

float scale
size of a pixel in [m]

Vector2d origin
grid offset (map position of lower left pixel, world to map) [m]

double orientation
grid rotation (world to map) [rad]

Methods

void transform(Transform3D *sample)

Matrix4d get_grid_to_frame() const
computes grid to ‘frame’ 2.5D transformation matrix

Matrix4d get_frame_to_grid() const
computes ‘frame’ to grid 2.5D transformation matrix

bool same_as(GridMapData *other) const
returns true if both have same name and last_modified time

map_info_t get_info() const

3.3.16 pilot.Incident

Class

Generic incident type, as published on platform.events for example.

External modules can publish their own incidents on topic platform.incidents. They will be handled by Pilot-
Server and re-published on platform.events as required.

Inherits from pilot.Event.

Fields

bool is_active
If this incident is currently active, ie. not a one time event.

bool is_cleared
If this incident was active before and is now cleared, ie. no longer active.

int timeout_ms = 3000
Timeout in case of an active incident in [ms]. timeout_ms <= 0 disables the feature. If the incident is not
re-published within the specified timeout it will be automatically cleared by PilotServer.

3.3. Classes 61

PlatformPilot Documentation, Release 1.6.2

3.3.17 pilot.JoyData

Class

JoyData contains data from a connected joystick.

Inherits from pilot.Sample.

Fields

vector<float> axes
List of joystick axis and their position from -1 to 1. Usually there are the following: [JOYAXIS_LEFT_X, JOY-
AXIS_LEFT_Y, JOYAXIS_LT, JOYAXIS_RIGHT_X, JOYAXIS_RIGHT_Y, JOYAXIS_RT, JOYAXIS_MAX]

vector<bool> buttons
List of joystick buttons and their state. Usually there are the following: [JOYBUTTON_A, JOYBUTTON_B,
JOYBUTTON_X, JOYBUTTON_Y, JOYBUTTON_LB, JOYBUTTON_RB, JOYBUTTON_BACK, JOYBUT-
TON_START, JOYBUTTON_MAX]

3.3.18 pilot.LaserPointCloud

Class

LaserPointCloud contains additional information for laser point clouds.

Inherits from pilot.PointCloud2D.

Fields

vector<uchar> intensity
Measured intensities for each point in points. An intensity >= 100 is a reflector, 200 is a perfect reflector.

3.3.19 pilot.LocalPlannerState

Class

LocalPlannerState represents the current state of the LocalPlanner.

Inherits from pilot.Sample.

Fields

Hash64 job
Unique id of the current job / goal.

long path_time
POSIX timestamp of the current path in [usec].

double path_length
Total path length in [meters].

PathPoint2D *point
Current path point if any (ie. closest to current position).

62 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

PathPoint2D *goal
Current goal point, ie. last point in current path.

goal_options_t goal_options
Current goal options.

Vector2d pos_error
Current (x, y) position error in [meters].

double yaw_error
Current yaw orientation error in [radians].

float update_rate
Current control update rate in [1/s].

local_planner_state_e state
Current local planner state, see pilot.local_planner_state_e.

limit_reason_e velocity_reason
Current reason for velocity limitation, see pilot.limit_reason_e.

limit_reason_e yawrate_reason
Current reason for yawrate limitation, see pilot.limit_reason_e.

float time_stuck
How long the platform has already been stuck in [seconds], in case state == STUCK.

float progress
Relative progress, from 0 to 1. Ratio of traversed path distance vs. total path length.

bool is_backwards
If platform is currently driving backwards.

bool is_restricted
If platform is currently restricted from turning around.

vector<int> path_history
Sliding window history of traversed path element ids, newest at the end. See pilot.MapElement. Usually contains
at least the last 10 elements.

3.3.20 pilot.LocalizationStatus

Class

LocalizationStatus contains information about the current state of localization.

Inherits from pilot.Sample.

Fields

localization_mode_e mode
Current localization mode, see pilot.localization_mode_e.

set<string> sensors
Current list of sensors used for localization.

float update_rate
Current update rate in [1/s]

3.3. Classes 63

PlatformPilot Documentation, Release 1.6.2

int num_points
Number of valid sensor points, excluding reflectors.

int num_points_total
Number of valid sensor points, including reflector points.

Vector3f std_dev
Current particle spread standard deviation (x, y, yaw) [m, m, rad]. See math.Vector3f .

float score
Current scan matching score, ie. average likelihood. More is better, maximum is 1.0 (ie. all scan points are
matching exactly to the Grid Map).

3.3.21 pilot.MapArea

Class

Describes a special area within a map.

Fields

string name

string type

string description

polygon_t outline

vector<area_property_e> flags

3.3.22 pilot.MapElement

Class

MapElement is the base class for an entity in the Road Map.

Fields

int id
Unique id for the element, starting at zero.

string group
Logical group name, mostly for visualization purposes.

vector<string> profiles
List of profiles assinged to this element, parameters are copied / over-written in the order of profiles listed.

3.3.23 pilot.MapMatch

Class

MapMatch describes the current position in terms of the Road Map, when possible.

Inherits from pilot.Sample.

64 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

Fields

bool is_valid
If a match was found or not.

float distance
Shortest distance from platform center to matched node or segment in [meters].

MapNode *node
The matched pilot.MapNode if near a node.

RoadSegment *segment
The matched pilot.RoadSegment if on a segment, which is normally the case.

vector<MapArea *> areas
Areas the platform is inside of.

3.3.24 pilot.MapNode

MapNode describes a node in a Road Map. It has a position as well as an optional name, in addition to some parame-
ters.

Inherits from pilot.MapElement.

Fields

int parent = -1
Parent node id, if any. If a pilot.MapNode or pilot.MapStation has a parent its position (and orientation) is
defined relative to it.

string name
Optional node name, usually a station name.

Vector2d position
2D (x, y) map position, see math.Vector2d.

Vector3d offset
3D (x, y, yaw) pose offset relative to parent, see math.Vector3d. If parent is a pilot.MapStation the offset is
relative to its orientation.

set<drive_flags_e> drive_flags
A set of drive flags for this node, see pilot.drive_flags_e.

3.3.25 pilot.MapProfile

Class

MapProfile represents a set of parameters which can be applied to multiple map elements at once.

Fields

string name
Profile name, should be unique.

string description
Profile description text.

3.3. Classes 65

PlatformPilot Documentation, Release 1.6.2

Object node
A set of pilot.MapNode parameters. See vnx.Object.

Object segment
A set of pilot.RoadSegment parameters. See vnx.Object.

Object station
A set of pilot.MapStation parameters. See vnx.Object.

3.3.26 pilot.MapStation

Class

MapStation describes a station in a Road Map, something which can be set as a goal. It has a position as well as an
orientation, in addition to some parameters.

Inherits from pilot.MapNode.

Fields

float orientation
Absolute map goal orientation in [radians].

float_param_t goal_tune_time
Additional time for fine tuning position in [seconds]. See pilot.float_param_t.

vector_3f_param_t goal_tolerance
Maximum goal position error (x, y, yaw) [m, m, rad], see pilot.vector_3f_param_t.

3.3.27 pilot.OccupancyMapData

Class

Map with environment information used for navigation.

Inherits from pilot.GridMapData.

Fields

static const uchar FREE = 0

static const uchar DYNAMIC = 253

static const uchar PROHIBITED = 254

static const uchar UNKNOWN = 255

Image8 occupancy
Represents the pixel grid.

• 0 to 100 = wall

• 101 to 200 = reflector

• 254 = prohibited

• 255 = unknown

66 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

Methods

Image8 to_mono_image() const
convert to 8-bit format (0 to 255)

Image8 to_rgba_image(int alpha) const
for visualization

ImageF32 to_float(float special, bool combined) const
convert to float format (0 to 1)

OccupancyMapData *to_reflector_map() const
convert to reflector occupancy (shift 200 to 100, erase 0 to 100)

OccupancyMapData *to_combined_map() const
convert reflectors to normal occupancy (map 200 to 100)

static Vector4uc to_rgba(int value, int alpha)
convert occupancy to RGBA

3.3.28 pilot.Odometry

Class

Odometry contains information about the platform’s odometry, as well as velocities. See also Coordinate Systems.

Inherits from basic.Transform3D.

Fields

Vector3d position
Current 3D (x, y, z) [m] odom position.

Vector3d orientation
Current 3D (roll, pitch, yaw) [rad] odom orientation.

Vector3f linear_velocity
Current 3D (x, y, z) [m/s] odom velocity.

Vector3f angular_velocity
Current 3D (roll, pitch, yaw) [rad/s] odom angular velocity.

3.3.29 pilot.Path2D

Class

Path2D represents a 2D path made of individual pilot.PathPoint2D points, in a given coordinate system.

Inherits from pilot.Sample.

Fields

Hash64 job
Unique job id for this path / goal.

3.3. Classes 67

PlatformPilot Documentation, Release 1.6.2

vector<PathPoint2D *> points
List of path points, see pilot.PathPoint2D.

3.3.30 pilot.PathPoint2D

Class

PathPoint2D represents a point on a path to navigate. They are usually generated from a Road Map and then optimized
while driving. It can also be a final goal position.

Inherits from pilot.Pose2D.

Fields

int map_id = -1
Id of the map element in the Road Map, if any.

drive_mode_e drive_mode = DEFAULT
Specifies how the robot should navigate, see pilot.drive_mode_e.

set<drive_flags_e> drive_flags
A set of drive flags for this path point, see pilot.drive_flags_e.

float_param_t orientation
Yaw angle offset relative to pose.z() (holonomic only) in [radians]. See pilot.float_param_t.

float_param_t max_velocity
Maximum velocity in [m/s]. See pilot.float_param_t.

float_param_t max_yawrate
Maximum yawrate in [rad/s]. See pilot.float_param_t.

float_param_t goal_tune_time
Additional time for fine tuning position in [seconds]. See pilot.float_param_t.

vector_3f_param_t tolerance
Maximum position error (x, y, yaw) [m, m, rad], see pilot.vector_3f_param_t.

bool is_restricted
True if a 360 degree rotation is not possible at this location.

3.3.31 pilot.PilotState

Class

PilotState contains information about the current state of the robot.

Fields

long time
POSIX timestamp in [usec]

Hash64 robot_id
Unique robot id.

68 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

string pilot_version
Version number of the platform software.

pilot_mode_e pilot_mode
Current pilot mode, see pilot.pilot_mode_e.

motion_mode_e motion_mode
Current motion mode, see pilot.motion_mode_e.

LocalPlannerState *planner
Current local planner state, see pilot.LocalPlannerState.

LocalizationStatus *localization
Current localization status, see pilot.LocalizationStatus.

ExecutionState *execution
Current task execution status, see pilot.ExecutionState.

ActiveIncidents *incidents
Currently active incidents, see pilot.ActiveIncidents.

bool is_recording
If data recording is currently active, see topic vnx.recorder_status.

3.3.32 pilot.PlatformInfo

Class

PlatformInfo contains static information about the robot.

Fields

platform_type_e type
Type of the platform, see pilot.platform_type_e.

string name
Name of the robot.

string serial
Serial number of the robot.

long date_of_manufacture
POSIX timestamp regarding the date of manufacture of the robot in [seconds].

vector<string> features
List of special features that the platform has.

3.3.33 pilot.PointCloud2D

Class

PointCloud2D contains a cloud of 2D points, usually laser points. See also pilot.LaserPointCloud.

Inherits from pilot.Sample.

3.3. Classes 69

PlatformPilot Documentation, Release 1.6.2

Fields

string sensor
Original sensor coordinate frame. (also name of sensor)

sensor_2d_range_t field
Field of view of the sensor, relative to its own coordinate system, see pilot.sensor_2d_range_t.

Transform3D *base_to_odom
Transformation from base_link to odom frame at the time of this scan.

Transform3D *sensor_to_base
Transformation from sensor to base_link frame.

vector<Vector2d> points
List of 2D (x, y) points [meters], in frame coordinates, see pilot.Sample.

3.3.34 pilot.Pose2D

Class

Pose2D represents a 2D pose (x, y, yaw) in the specified coordinate system.

Inherits from basic.Transform3D.

Fields

Vector3d pose
2D pose (x, y, yaw) [m, m, rad], see math.Vector3d.

Matrix3f covariance
Optional pose covariance matrix.

3.3.35 pilot.PoseArray2D

Class

An aggregation of poses.

Inherits from pilot.Sample.

Fields

vector<Vector3d> poses
[x, y, yaw] (m, m, rad)

Methods

void transform(Transform3D *sample)

70 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.3.36 pilot.PowerState

Class

PowerState contains information about the platform’s power supply.

Fields

power_system_type_e power_system_type
Type of power system, see pilot.power_system_type_e.

charging_state_e charging_state
Current charging state, see pilot.charging_state_e.

bool is_charging
If charging is enabled.

3.3.37 pilot.RelayBoardData

Class

RelayBoardData contains the data sent by the RelayBoard.

Fields

float ambient_temperature
Ambient temperature inside the platform in [C].

vector<bool> relay_states
State of the power relays, usually there is 4 of them.

keypad_state_t keypad_state
Keypad button states, if available, see pilot.keypad_state_t.

3.3.38 pilot.RoadMapData

Class

RoadMapData contains all the information regarding a Road Map.

Fields

string name
Name of the map.

long last_modified
POSIX timestamp when the map was last modified in [usec].

vector<MapNode *> nodes
List of map nodes, see pilot.MapNode.

vector<RoadSegment *> segments
List of road segments, see pilot.RoadSegment.

3.3. Classes 71

PlatformPilot Documentation, Release 1.6.2

map<string, MapProfile *> profiles
Map of map profiles [name => profile], see pilot.MapProfile.

vector<MapArea *> areas
List of map areas, see pilot.MapArea.

3.3.39 pilot.RoadSegment

Class

RoadSegment represents a connection in the Road Map from one pilot.MapNode to another.

Inherits from pilot.MapElement.

Fields

int from_node
pilot.MapNode id from where the segment begins.

int to_node
pilot.MapNode id to where the segment goes.

char direction = 0
-1 = one way backwards, 0 = two way, 1 = one way forwards

drive_mode_e drive_mode = RELAXED_PATH_FOLLOW
Drive mode to be used on this segment, see pilot.drive_mode_e.

orientation_mode_e orientation_mode = RELATIVE_ROAD
Orientation mode to be used on this segment, see pilot.orientation_mode_e.

float_param_t tolerance
Lateral tolerance in [meters], how much the path can be modified while driving (to avoid obstacles, etc). See
pilot.float_param_t.

float_param_t orientation
Orientation to drive at on this segment in [radians]. Actual orientation depends on orientation_mode. See
pilot.float_param_t.

float_param_t orientation_tolerance
Maximum deviation allowed from the target orientation on this segment in [radians]. See pilot.float_param_t.

float_param_t max_velocity
Maximum velocity allowed on this segment in [m/s]. See pilot.float_param_t.

float_param_t max_yawrate
Maximum yawrate allowed on this segment in [rad/s]. See pilot.float_param_t.

set<drive_flags_e> drive_flags
A set of drive flags for this segment, see pilot.drive_flags_e.

3.3.40 pilot.RobotInfo

Class

Information about the overall status of a robot.

72 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

Fields

Hash64 id
unique robot id

optional<map_info_t> grid_map
used grid map

optional<map_info_t> road_map
used road map

optional<pose_2d_t> map_pose

optional<Vector3f> velocity
relative to base_link (x, y, yaw) [m/s, m/s, rad/s]

PilotState *state

Path2D *map_path

MapMatch *map_match

Footprint *footprint

PlatformInfo *platform

SystemState *system_status

BatteryState *battery_state

EmergencyState *emergency_state

vector<PointCloud2D *> laser_scans
in map coordinates

3.3.41 pilot.Sample

Class

Sample is a base class for any type requiring a time stamp as well as a coordinate system.

Fields

long time
POSIX timestamp in [usec]

string frame
Coordinate system name, usually map, odom or base_link, see Coordinate Systems.

3.3.42 pilot.StackFrame

Class

StackFrame contains information about the context of execution of the TaskHandler.

3.3. Classes 73

PlatformPilot Documentation, Release 1.6.2

Fields

string method
Method name of the function on the call stack.

int line_number
Line number in the source code.

3.3.43 pilot.SystemState

Class

SystemState contains information about the platform’s system state.

Fields

vector<system_error_e> system_errors
List of system errors currently active, see pilot.system_error_e.

bool is_shutdown
If platform has been asked to shutdown now, via the key switch.

bool is_initialized
If platform hardware is initialized.

3.3.44 pilot.Task

Class

Task contains information about the current task being executed by the TaskHandler.

Fields

Hash64 id
Unique task id, randomly generated. See vnx.Hash64.

string module
Module name which is handling the task, empty if handled internally.

string method
Method name of the task being executed.

Object args
Parameters for the task being executed. See vnx.Object.

3.3.45 pilot.VelocityCmd

Class

VelocityCmd contains the current commanded platform velocity. Usually only X / Y velocity and yawrate are specified.

Inherits from pilot.Sample.

74 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

Fields

Vector3f linear
3D (x, y, z) translational velocity in [m/s].

Vector3f angular
3D (roll, pitch, yaw) angular velocity in [rad/s].

bool allow_wheel_reset = true
If to allow automatic wheel resetting of an MPO-700.

bool reset_wheels = false
If to reset the wheels of an MPO-700 to their home position, when not moving.

3.3.46 pilot.VelocityLimits

Class

VelocityLimits defines different limits and thresholds regarding platform velocity.

Fields

float max_vel_x
Maximum forward velocity (positive) [m/s]

float min_vel_x
Maximum backwards velocity (negative) [m/s]

float max_vel_y
Maximum lateral velocity (positive) [m/s]

float max_trans_vel
Maximum translational velocity in any direction (positive) [m/s]

float min_trans_vel
Minimum translational velocity (positive) [m/s]

float max_rot_vel
Maximum absolute yawrate (positive) [rad/s]

float min_rot_vel
Minimum absolute yawrate (positive) [rad/s]

float trans_stopped_vel
Threshold for deciding when platform is stopped based on translational velocity (positive) [m/s]

float rot_stopped_vel
Threshold for deciding when platform is stopped based on rotational velocity (positive) [rad/s]

3.3.47 pilot.area_property_e

Enumeration

Describes a property of a pilot.MapArea.

enumerator DANGER

enumerator NO_HUMANS

3.3. Classes 75

PlatformPilot Documentation, Release 1.6.2

enumerator DARK

enumerator LOUD

enumerator WET_FLOOR

enumerator DIRTY_FLOOR

enumerator DRAFTY

3.3.48 pilot.battery_code_e

Enumeration

Describes an error or warning regarding the battery.

enumerator LOW
If battery is below ~25% remaining.

enumerator CRITICAL
If battery is below ~10% remaining.

enumerator OVERHEAT
If battery temperature is above 50C.

3.3.49 pilot.battery_type_e

Enumeration

Denotes the battery type.

enumerator AGM
Lead battery with absorbent glass mat technology

enumerator LFP
Lithium iron phosphate battery

3.3.50 pilot.charging_state_e

Enumeration

Displays the charging state of the battery.

enumerator NOT_CHARGING

enumerator IS_CHARGING

enumerator NO_CHARGER

enumerator BRAKES_OPEN

enumerator EM_STOP

enumerator ABORTED

enumerator FINISHED

76 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.3.51 pilot.drive_flags_e

Enumeration

Flags that modifiy robot navigation or behavior.

enumerator FIXED_ORIENTATION
Flag to disable orientation optimization / modification (holonomic only). Will keep orientation from Road Map,
even when the path itself is changed. Used to keep a specific orientation while moving.

enumerator IGNORE_FOOTPRINT
Flag to disable collision avoidance, use with care. Used to dock with external components where obstacles can
be very close to the robot (inside footprint).

enumerator DISABLE_ROTATION
Disable rotation of the robot (forced zero control yawrate). Will prevent robot from rotating while moving, or
rotating in place. Used to dock with external components where rotation would lead to damage of the robot or
components. If rotation is necessary to reach the goal, a failure will be issued.

enumerator BACKWARD_OVERRIDE
Allows driving backwards even when normally prohibited. Used in special cases where unsafe backwards
driving is necessary.

enumerator OMNI_DIRECTIONAL
Allows driving with arbitrary orientation by default (holonomic only). Will permit infinite yaw lookahead, such
as to minimize total yaw motion. If not set, a platform will usually align with orientation of the road.

enumerator DISABLE_WHEEL_RESET
Disables automatic wheel resetting of the MPO-700. Used to increase positioning accuracy at certain stations.

enumerator RESET_WHEELS
Will reset the wheels of an MPO-700 at the (goal) station to their home positions.

3.3.52 pilot.drive_mode_e

Enumeration

Specifies how the robot should navigate.

enumerator STRICT_PATH_FOLLOW
Follows a given path exactly, without trying to optimize it. If there is an obstacle the robot will wait.

enumerator RELAXED_PATH_FOLLOW
The given path is optimized while driving. Obstacles may be avoided, corners are cut.

enumerator FREE_PATH_FOLLOW
Same as RELAXED_PATH_FOLLOW except that in case of a blockage the robot is allowed to generate a new
path by itself.

enumerator FREE_ROAMING
Will ignore the geometry of the path segment(s) and use the GlobalPlanner to create an actual path to follow.

enumerator DEFAULT
One of the above, depending on robot configuration, usually RELAXED_PATH_FOLLOW.

3.3. Classes 77

PlatformPilot Documentation, Release 1.6.2

3.3.53 pilot.em_stop_state_e

Enumeration

Different states of the Emergency Stop system.

enumerator FREE
Emergency Stop is not engaged, platform is free to move.

enumerator STOPPED
Emergency Stop is engaged, platform is prevented from moving.

enumerator CONFIRMED
Emergency Stop has been released manually, will go to FREE shortly.

3.3.54 pilot.event_code_e

Enumeration

Describes an event.

enumerator NEW_GOAL

enumerator GOAL_REACHED

enumerator GOAL_CANCELED

enumerator NEW_TASK

enumerator TASK_COMPLETED

enumerator TASK_FAILED

enumerator EXECUTION_PAUSED

enumerator EXECUTION_RESUMED

enumerator EXECUTION_CANCELED

3.3.55 pilot.event_t

Struct

event_t describes an event, without an attached timestamp.

The fields module, code_type and code uniquely define a specific event type that can occur.

Fields

event_type_e type
Event type, see pilot.event_type_e.

string module
Module name that generated the event.

string code_type
Type name for the code field, usually the enum type name. For example: pilot.safety_code_e.

78 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

string code
Event code, usually an enum value. For example: EMERGENCY_STOP.

3.3.56 pilot.event_type_e

Enumeration

Describes the type of a pilot.event_t.

enumerator ERROR

enumerator WARNING

enumerator NOTIFICATION

3.3.57 pilot.execution_state_e

Enumeration

Possible states of task execution.

enumerator RUNNING
Currently executing a task.

enumerator PAUSED
Execution has been paused.

enumerator FINISHED
Execution has finished.

enumerator CANCELED
Execution was canceled.

3.3.58 pilot.float_param_t

Struct

float_param_t represents a float value with additional semantic information.

It can always be specified as just a float value, in which case type will be set to CUSTOM.

Fields

param_type_e type
Semantic type information, see pilot.param_type_e.

float value
The actual value, depending on type it may not be used.

3.3.59 pilot.goal_options_t

Struct

A set of options to modify how a goal is to be reached.

3.3. Classes 79

PlatformPilot Documentation, Release 1.6.2

Fields

optional<float> max_velocity
Global velocity limit in [m/s], optional.

optional<float> max_time_stuck
How long to wait until aborting goal when stuck in [seconds] (default = infinite)

optional<drive_mode_e> drive_mode
Custom drive mode for the entire path, see pilot.drive_mode_e.

optional<drive_mode_e> planner_mode
Custom drive mode for path planning (global planner)

set<drive_flags_e> drive_flags
Set of additional drive flags for final goal position. See pilot.drive_flags_e.

3.3.60 pilot.keypad_state_t

Struct

An object of this type represents the current state of the keypad.

For each button there is a boolean member which is true when the button is pressed and false when it is not.

Fields

bool info_button

bool home_button

bool start_button

bool stop_button

bool break_release_button

bool digital_input[3]
An array entry is true if the corresponding digital input is active.

3.3.61 pilot.limit_reason_e

Enumeration

Possible reasons for limiting velocity or yawrate.

enumerator DEFAULT_MAX
Default maximum for the platform. (global configuration)

enumerator CUSTOM_MAX
Custom limit (at current position). (Road Map parameter, or via. pilot.goal_options_t)

enumerator ACCEL_MAX
Limited due to hitting maximum allowed acceleration / decceleration.

enumerator LOCAL_COST
Limited due to obstacles in path or close to path.

80 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

enumerator PATH_DEVIATION
Limited due to unexpected deviation from path.

enumerator ORIENTATION_DEVIATION
Limited due to unexpected deviation from target orientation.

enumerator CURVE_LIMIT
Limited due to maximum lateral acceleration.

enumerator WAITING
Limited due to waiting for a certain condition.

enumerator GOAL_MAX
Limited due to approaching final goal position.

enumerator LIMIT_AHEAD
Limited due to approaching a lower limit on the path ahead.

enumerator OBSTACLE
Limited due to obstacle blocking the path.

enumerator STOPPING
Limited due to trying to stop.

enumerator FINISHED
Limited due to having reached the goal.

3.3.62 pilot.local_planner_state_e

Enumeration

Possible states of the LocalPlanner.

enumerator IDLE
Waiting for a job / goal.

enumerator WAITING
Waiting to move, due to several possible reasons, for example waiting for localization to intialize.

enumerator TRANSLATING
Moving in X / Y direction, can include rotation also.

enumerator ROTATING
Rotating in place, without X / Y movement.

enumerator ADJUSTING
Rotating in place while making small adjustments in X / Y position. For differential kinematics only.

enumerator TURNING
Rotating in place to turn around. For differential kinematics only.

enumerator STUCK
Unable to continue for now, due to obstacles in the path.

enumerator FINISHED
Current goal has been reached, waiting for new job / goal.

enumerator CANCELED
Current goal has been canceled, stopping now.

enumerator LOST
Current position could not be matched to the given path, requesting new path.

3.3. Classes 81

PlatformPilot Documentation, Release 1.6.2

3.3.63 pilot.localization_mode_e

Enumeration

Possible modes of localization.

enumerator NONE
No localization running.

enumerator NO_MAP
No Grid Map available.

enumerator NO_INPUT
No sensor input available.

enumerator NO_ODOMETRY
No odometry available.

enumerator LOST
Unable to localize, position most likely wrong.

enumerator INITIALIZING
Performing initial localization, waiting for confidence to increase.

enumerator DEAD_RECKONING
Unable to localize at current position, extrapolating based on odometry.

enumerator MODE_1D
Partial localization in one direction, DEAD_RECKONING otherwise.

enumerator MODE_1D_YAW
Partial localization in one direction plus orientation, DEAD_RECKONING otherwise.

enumerator MODE_2D
Partial localization in X and Y direction, DEAD_RECKONING for orientation.

enumerator MODE_2D_YAW
Full localization in X and Y direction as well as orientation.

3.3.64 pilot.map_info_t

Struct

Unique identifier for a Grid Map or a Road Map.

string name
Map name.

long last_modified
Last modified time as Posix timestamp in microseconds.

string description
Map description. This member is not used for map identification.

bool same_as(map_info_t other) const
Returns true if name and last_modified are the same on both objects.

82 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.3.65 pilot.motion_mode_e

Enumeration

A set of motion modes of the robot, defining who is contolling the motion.

enumerator NONE
No motion is possible in this mode.

enumerator CUSTOM
Custom motion commands on topic platform.velocity_cmd control the robot.

enumerator JOYSTICK
Motion commands from a connected joystick control the robot.

enumerator AUTOMATIC
The LocalPlanner is controlling the robot, usually following a path generated by the HybridPlanner.

3.3.66 pilot.orientation_mode_e

Enumeration

Different modes affecting the orientation of the platform.

enumerator RELATIVE_ROAD
Specified orientation is relative to the pilot.RoadSegment.

enumerator ABSOLUTE_MAP
Specified orientation is an absolute map orientation (ie. relative to the map coordinate system).

3.3.67 pilot.param_type_e

Enumeration

Semantic type of a parameter.

enumerator DEFAULT
The default value should be used.

enumerator CUSTOM
The custom value that is provided should be used.

enumerator OPTIMIZED
Similar to CUSTOM, means the value was optimized internally instead of specified by a user.

enumerator DISABLED
The feature corresponding to the parameter should be disabled.

enumerator IGNORE
The parameter should be ignored.

3.3.68 pilot.permission_e

Enumeration

Permissions that can be given to certain users. See also vnx.permission_e.

3.3. Classes 83

PlatformPilot Documentation, Release 1.6.2

enumerator MOVE
Permission to move robot.

enumerator CHARGE
Permission to charge robot.

enumerator INITIALIZE
Permission to initialize localization.

enumerator RECORD_DATA
Permission to start a data recording.

enumerator REMOTE_CONTROL
Permission to control robot remotely.

enumerator RELAY_CONTROL
Permission to switch relays.

enumerator DISPLAY_CONTROL
Permission to display text on the LCD.

enumerator CHANGE_GRIDMAP
Permission to change the active Grid Map.

enumerator CHANGE_ROADMAP
Permission to change the active Road Map.

enumerator UPLOAD_SCRIPT
Permission to upload / overwrite scripts.

enumerator EXECUTE_SCRIPT
Permission to execute scripts.

enumerator INTERVENE_SCRIPT
Permission to pause / resume scripts.

3.3.69 pilot.pilot_mode_e

Enumeration

A set of operating modes of the robot.

enumerator MAPPING
Creation of a new map or updating of an existing map.

enumerator NAVIGATION
Normal navigation mode, using localization with an existing map.

enumerator TELEOP
Basic operation mode, without localization and path planning.

enumerator REPLAY
Special simulation mode to recompute dynamic data based on recorded sensor data, for visualization purposes.

3.3.70 pilot.platform_type_e

Enumeration

Available platform types.

84 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

enumerator MP_400
Neobotix MP-400, see https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mp-400.

enumerator MP_500
Neobotix MP-500, see https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mp-500.

enumerator MPO_500
Neobotix MPO-500, see https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mpo-500.

enumerator MPO_700
Neobotix MPO-700, see https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mpo-700.

3.3.71 pilot.polygon_t

Struct

polygon_t describes a geometric polygon in a certain frame of reference.

Fields

string frame
Coordinate system name, for example base_link.

vector<Vector2d> points
List of points forming the polygon, see math.Vector2d. The order of points does not matter, clock-wise or
anti-clock-wise is both supported.

3.3.72 pilot.power_system_type_e

Enumeration

Specifies the voltage of the system.

enumerator POWER_24V
The system runs on 24 volts.

enumerator POWER_48V
The system runs on 48 volts.

3.3.73 pilot.safety_code_e

Enumeration

Describes an error of the safety system.

enumerator NONE

enumerator SCANNER_STOP
One of the safety scanners has stopped the platform.

enumerator EMERGENCY_STOP
One of the emergency stop buttons has been pressed.

3.3. Classes 85

https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mp-400
https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mp-500
https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mpo-500
https://www.neobotix-roboter.de/produkte/mobile-roboter/mobiler-roboter-mpo-700

PlatformPilot Documentation, Release 1.6.2

3.3.74 pilot.sensor_2d_range_t

Struct

Specifies the range in which a sensor measurement is considered valid.

Fields

float min_angle
normalized between -pi to +pi [rad]

float max_angle
normalized between -pi to +pi [rad]

float min_range
[m]

float max_range
[m]

Methods

bool is_valid(float distance) const

bool is_within(float angle, float distance) const

bool is_within_xy(Vector2f point) const

bool is_within_point(laser_point_t point) const

void add_margin(float delta_angle, float delta_range)

3.3.75 pilot.system_error_e

Enumeration

The type of a system error.

enumerator CHARGING_RELAY_ERROR

enumerator BRAKE_RELEASE_BUTTON_ERROR

enumerator MOTOR_ERROR

enumerator SAFETY_RELAY_ERROR

enumerator POWER_RELAY_ERROR

enumerator EM_STOP_SYSTEM_ERROR
Emergency stop button failure.

3.3.76 pilot.vector_3f_param_t

Struct

vector_3f_param_t represents a 3D float vector with additional semantic information.

86 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

It can always be specified as just a 3D float vector, in which case the types will be set to CUSTOM.

Fields

float_param_t x
X value, see pilot.float_param_t.

float_param_t y
Y value, see pilot.float_param_t.

float_param_t z
Z value, see pilot.float_param_t.

3.3.77 vnx.Hash64

Hash64 is a 64-bit unsigned integer, which usually represents a CRC64 hash of a string, or sometimes simply a
random number.

The specific hash function used is CRC-64/XZ (alias CRC-64/GO-ECMA), see also https://reveng.
sourceforge.io/crc-catalogue/17plus.htm#crc.cat-bits.64.

3.3.78 vnx.JRPC_Error

Class

The error object that is contained in error messages returned by JSON-RPC Interface.

Fields

int code
One of the following error codes:

static const int PARSE_ERROR = -32700;
static const int INVALID_REQUEST = -32600;
static const int METHOD_NOT_FOUND = -32601;
static const int INVALID_PARAMS = -32602;
static const int INTERNAL_ERROR = -32603;

static const int PERMISSION_DENIED = 403;
static const int EXCEPTION = 500;

string message
A short message to indicate what went wrong.

Exception *data
The actual exeption object as thrown on the server side.

3.3.79 vnx.LogMsg

Class

Represents a log message.

3.3. Classes 87

https://reveng.sourceforge.io/crc-catalogue/17plus.htm#crc.cat-bits.64
https://reveng.sourceforge.io/crc-catalogue/17plus.htm#crc.cat-bits.64

PlatformPilot Documentation, Release 1.6.2

Fields

static int ERROR = 1

static int WARN = 2

static int INFO = 3

static int DEBUG = 4

long time

int level

int display_level = 3

string process

string module

string message

Methods

string get_output() const
Returns a properly formatted line ready to be printed out.

3.3.80 vnx.ModuleInfo

Class

Information about a module.

Fields

long time
time stamp (virtual time) [usec]

Hash64 id
unique module id

Hash64 src_mac
source mac for publishing

string name
module name

string type
type name

long time_started
POSIX timestamp [usec]

long time_idle
current stats (see vnx_heartbeat_interval_ms) [usec]

long time_running
current stats (see vnx_heartbeat_interval_ms) [usec]

88 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

long time_idle_total
since start of module [usec]

long time_running_total
since start of module [usec]

long num_async_pending
number of pending async requests (waiting for returns)

long num_async_process
number of async requests being processed right now

vector<string> sub_topics
topic subscriptions

vector<string> pub_topics
topic publishers

map<Hash64, Endpoint *> remotes
map of connected processes (process id => endpoint)

TypeCode type_code
module type code

Methods

double get_cpu_load() const
0 to 1

double get_cpu_load_total() const
0 to 1 (total average)

3.3.81 vnx.Object

Object represents an arbitrary object which is dynamically created and does not have a type. However an optional type
name can be specified via a special field called __type. Internally it is a map of string keys to vnx.Variant values.

JSON

In JSON format an object is specified as follows:

{
"__type": "optional.type.name.here",
"field": "value",
"some": 1234,
"array": [1, 2, 3, 4],
"nested": {

"example": "value",
...

},
...

}

3.3. Classes 89

PlatformPilot Documentation, Release 1.6.2

Lua Script

In Lua Script an object can be created as follows:

{
field = "value",
some = 1234,
array = {1, 2, 3, 4},
nested = {

example = "value",
...

},
...

}

Native C++

In native C++ an object can be created as follows:

#include <vnx/vnx.h>

vnx::Object obj;
obj["field"] = "value";
obj["some"] = 1234;
obj["array"] = std::vector<int>{1, 2, 3, 4};

vnx::Object nested;
nested["example"] = "value";
obj["nested"] = nested;

std::cout << obj << std::endl;

3.3.82 vnx.User

Class

A User object represents an entity who can authenticate in order to operate with a special set of permissions.

Fields

string name
The name of the user as used to log in.

string hashed_password
A salted SHA-256 hash of the password.

vector<string> access_roles
user access roles

set<string> permissions
additional, user specific permissions

90 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.3.83 vnx.Variant

Variant represents a value of arbitrary type which is assigned dynamically. It can be an integral (ie. int, float, . . .),
a string, a vector<T> of values, a set<T> of values, a map<K, V> of values or an vnx.Object, for example.

JSON

In JSON format a Variant could be anything, for example: null, true, false, a number, a string, an array of values
or an object.

Lua Script

In Lua Script a Variant is a normal Lua variable and can be anyting, for example: nil, true, false, a number, a
string, an array of values, a table or an object.

Native C++

In native C++ a Variant can be created / assigned as follows:

#include <vnx/vnx.h>

vnx::Variant example(1234);

std::cout << example.to<int>() << std::endl; // 1234

example = "value";

std::cout << example.to<std::string>() << std::endl; // value

example = std::vector<int>{1, 2, 3, 4};

std::cout << example << std::endl; // [1, 2, 3, 4]

vnx::Object obj;
obj["field"] = "value";
example = obj;

std::cout << example << std::endl; // {"field": "value"}

3.3.84 vnx.access_role_e

Enumeration

A set of default access roles and their default permissions.

See also vnx.permission_e.

enumerator DEFAULT
Default access role, mostly used for anonymous users. Does not provide any permissions by default, but that
can be changed via configuration.

enumerator VIEWER
Read-only access role. Provides permissions: VIEW, TIME_SYNC.

3.3. Classes 91

PlatformPilot Documentation, Release 1.6.2

enumerator OBSERVER
Same as VIEWER, with additional permission CONST_REQUEST.

enumerator USER
Same as OBSERVER, with additional permission READ_CONFIG.

enumerator INSTALLER
Same as USER, with additional permissions: PUBLISH, WRITE_CONFIG, START, STOP, RESTART, SHUT-
DOWN, SELF_TEST.

enumerator ADMIN
Same as INSTALLER, with additional permissions: REQUEST, PROTECTED_CONFIG, PROXY_IMPORT,
PROXY_EXPORT, PROXY_FORWARD, HOST_SHUTDOWN, LOCAL.

3.3.85 vnx.permission_e

Enumeration

Generic permissions that can be given to certain users.

enumerator VIEW
Permission to subscribe to topics (and access process statistics).

enumerator CONST_REQUEST
Permission to execute const methods that do not explicitly set a permission.

enumerator PUBLISH
Permission to publish samples.

enumerator REQUEST
Permission to execute all methods that do not explicitly set a permission.

enumerator READ_CONFIG
Permission to read config values.

enumerator WRITE_CONFIG
Permission to change config values.

enumerator PROTECTED_CONFIG
Permission to read/write protected config values (like user passwords etc).

enumerator START
Permission to start new modules.

enumerator STOP
Permission to stop a running module.

enumerator RESTART
Permission to restart a module.

enumerator SHUTDOWN
Permission to shutdown the process.

enumerator HOST_SHUTDOWN
Permission to shutdown the host machine.

enumerator SELF_TEST
Permission to execute self tests.

92 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.3.86 vnx.opc_ua.DataChange

Class

DataChange reports data changes for a vnx.opc_ua.monitored_item_t as part of a vnx.opc_ua.subscription_t to an
OPC-UA server.

Fields

int subscription_id

int monitored_item_id

Variant value
The new value of the item.

3.3.87 vnx.opc_ua.monitored_item_t

Struct

Describes a monitored item as part of a subscription to an OPC-UA server. See vnx.opc_ua.subscription_t.

Fields

monitoring_mode_e monitoring_mode = REPORTING
See vnx.opc_ua.monitoring_mode_e.

double sampling_interval = 250

bool discard_oldest = true

int queue_size = 1

node_id_t id
The node to monitor. See vnx.opc_ua.node_id_t.

bool monitor_changes = true

TopicPtr output_data
An optional topic on which to publish data changes as a vnx.opc_ua.DataChange object.

3.3.88 vnx.opc_ua.monitoring_mode_e

Enumeration

Monitoring mode of a vnx.opc_ua.monitored_item_t inside a subscription to an OPC-UA server.

enumerator DISABLED

enumerator SAMPLING

enumerator REPORTING

3.3. Classes 93

PlatformPilot Documentation, Release 1.6.2

3.3.89 vnx.opc_ua.node_id_t

Struct

Identification of an OPC-UA node.

Examples:

• {"index": 1, "name": "question"}

• {"index": 1, "name": 1236}

Fields

short index
Namespace index.

Variant name
Node name.

3.3.90 vnx.opc_ua.security_mode_e

Enumeration

The security required by the vnx.opc_ua.Proxy from the Server.

enumerator ANY
Accept anything that is also supported by the server.

enumerator NONE

enumerator SIGN

enumerator SIGN_AND_ENCRYPT

3.3.91 vnx.opc_ua.security_policy_e

Enumeration

The security policy of an endpoint provided by the vnx.opc_ua.Server.

enumerator NONE
No security, no encryption. Can be used without a private key and even without a certificate

enumerator BASIC_128_RSA_15
(Deprecated!)

enumerator BASIC_256
(Deprecated!)

enumerator BASIC_256_SHA_256

enumerator AES_128_SHA_256_RSA_OAEP

94 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.3.92 vnx.opc_ua.subscription_t

Struct

Describes a subscription to an OPC-UA server.

Fields

double publishing_interval = 500

int lifetime = 10000

int max_keepalive = 10

int max_notifications_per_publish = 0

bool publishing_enabled = true

char priority = 0

vector<monitored_item_t> monitored_items
The list of monitored items associated with this subscription. See vnx.opc_ua.monitored_item_t.

TopicPtr output_data
An optional topic on which to publish data changes of all monitored items as a vnx.opc_ua.DataChange object.

3.4 Modules

3.4.1 GlobalPlanner

Module

The GlobalPlanner module supports path planning based on a global cost map, which is generated from a Grid Map.
The module uses an A* style path finding algorithm.

Most functions require permission pilot.permission_e.MOVE, see pilot.permission_e.

Functions

Common Parameters

goal_options_t options Optional goal options, see pilot.goal_options_t. If not specified will use default
values.

Hash64 job Optional job id, to identify the new goal. If not specified (or set to zero) will generate a new random
id. See vnx.Hash64.

Asynchronous Move Functions

The following functions set / append a new goal while returing immediately.

void set_goal(PathPoint2D goal, goal_options_t options, Hash64 job)
Sets a new goal using the provided pose and parameters in goal. Any pending goals are canceled beforehand.
See pilot.PathPoint2D. Requires permission MOVE.

3.4. Modules 95

PlatformPilot Documentation, Release 1.6.2

Synchronous Move Functions

The following functions return when the new goal is physically reached, or the goal was canceled.

void move_to(PathPoint2D goal, goal_options_t options, Hash64 job)
Same as set_goal(...) but will block until goal is reached or canceled. See pilot.PathPoint2D. Requires
permission MOVE.

3.4.2 HttpProxy

Module

The HttpProxy module provides a HTTP REST API, see HTTP Interface.

Most functions require a special permission, see vnx.permission_e.

Functions

void publish(Object sample, string topic)
Will publish a given sample on the specified topic. Requires permission PUBLISH. See vnx.Object.

Object multi_request(map<string, string> paths) const
Performs multiple /api/ HTTP requests in one. paths is a map from paths to output names, for example:
[["/topic/...", "topic1"], ...]

The result will be a vnx.Object containing the individual results, for example: {"topic1": {...}, ...}

3.4.3 HybridPlanner

Module

The HybridPlanner module supports a combined path planning by taking into account a Road Map as well as a Grid
Map. It automatically chooses to drive on the Road Map when possible, only to fall back to Grid Map based navigation
if needed. As such it supports different ways to specify a goal, either by station name, by providing a modified station
structure or by specifying an arbitrary pose.

Multiple goals can be specified, in which case the goals are traversed one after the other, without waiting or stopping
at intermediate goals.

Most functions require permission pilot.permission_e.MOVE, see pilot.permission_e.

Functions

Common Parameters

goal_options_t options Optional goal options, see pilot.goal_options_t. If not specified will use default
values.

If options.planner_mode is set to FREE_ROAMING, the HybridPlanner ignores the roadmap and uses
free path planning.

Hash64 job Optional job id, to identify the new goal. If not specified (or set to zero) will generate a new random
id. See vnx.Hash64.

96 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

Asynchronous Move Functions

The following functions set / append a new goal while returning immediately. If there is already a goal in progress,
the set_* functions cancel it before setting the new goal (the call blocks until the robot stops) while the append_*
functions append the new goal after the end of the path.

void set_goal(MapStation goal, goal_options_t options, Hash64 job)
Sets a new goal using the provided pose and parameters in goal. Any pending goals are canceled beforehand.
See pilot.MapStation. Requires permission MOVE.

void set_goal_station(string name, goal_options_t options, Hash64 job)
Sets a new goal using the provided station name. Any pending goals are canceled beforehand. The station must
exist in the current Road Map. Requires permission MOVE.

void set_goal_position(PathPoint2D goal, goal_options_t options, Hash64 job)
Sets a new goal using the provided pose and parameters in goal. Similar to set_goal(). Any pending goals
are canceled beforehand. See pilot.PathPoint2D. Requires permission MOVE.

void append_goal(MapStation goal, goal_options_t options, Hash64 job)
Same as set_goal(...) but will not cancel active or pending goals. See pilot.MapStation. Requires per-
mission MOVE.

void append_goal_station(string name, goal_options_t options, Hash64 job)
Same as set_goal_station(...) but will not cancel active or pending goals. Requires permission MOVE.

void append_goal_position(PathPoint2D goal, goal_options_t options, Hash64 job)
Same as set_goal_position(...) but will not cancel active or pending goals. See pilot.PathPoint2D.
Requires permission MOVE.

Synchronous Move Functions

The following functions return when the new goal is physically reached, or the goal was canceled.

void move_to(MapStation goal, goal_options_t options, Hash64 job)
Same as set_goal(...) but will block until goal is reached or canceled. See pilot.MapStation. Requires
permission MOVE.

void move_to_station(string name, goal_options_t options, Hash64 job)
Same as set_goal_station(...) but will block until goal is reached or canceled. Requires permission
MOVE.

void move_to_position(PathPoint2D goal, goal_options_t options, Hash64 job)
Same as set_goal_position(...) but will block until goal is reached or canceled. See pi-
lot.PathPoint2D. Requires permission MOVE.

Asynchronous Move Sequence Functions

The following functions set / append a list of new goals while returning immediately. If there is already a goal in
progress, the set_* functions cancel it before setting the new goal (the call blocks until the robot stops) while the
append_* functions append the new goals after the end of the path.

void set_goals(vector<MapStation> goals, goal_options_t options, Hash64 job)
Sets a list of new goals, similar to set_goal(...). See pilot.MapStation. Requires permission MOVE.

void set_goal_stations(vector<string> names, goal_options_t options, Hash64 job)
Sets a list of new goals, similar to set_goal_station(...). The stations must exist in the current Road
Map. Requires permission MOVE.

3.4. Modules 97

PlatformPilot Documentation, Release 1.6.2

void set_goal_positions(vector<PathPoint2D> goals, goal_options_t options, Hash64 job)
Sets a list of new goals, similar to set_goal_position(...). See pilot.PathPoint2D. Requires permission
MOVE.

void append_goals(vector<MapStation> goals, goal_options_t options, Hash64 job)
Appends a list of new goals, similar to append_goal(...). See pilot.MapStation. Requires permission
MOVE.

void append_goal_stations(vector<string> names, goal_options_t options, Hash64 job)
Appends a list of new goals, similar to append_goal_station(...). Requires permission MOVE.

void append_goal_positions(vector<PathPoint2D> goals, goal_options_t options, Hash64 job)
Appends a list of new goals, similar to append_goal_position(...). See pilot.PathPoint2D. Requires
permission MOVE.

Synchronous Move Sequence Functions

The following functions return when the last goal specified has been physically reached, or the goals were canceled.

void move_tos(vector<MapStation> goals, goal_options_t options, Hash64 job)
Same as set_goals(...) but will block until last goal is reached or canceled. See pilot.MapStation. Re-
quires permission MOVE.

void move_to_stations(vector<string> names, goal_options_t options, Hash64 job)
Same as set_goal_stations(...) but will block until last goal is reached or canceled. Requires permis-
sion MOVE.

void move_to_positions(vector<PathPoint2D> goals, goal_options_t options, Hash64 job)
Same as set_goal_positions(...) but will block until last goal is reached or canceled. See pi-
lot.PathPoint2D. Requires permission MOVE.

3.4.4 LocalPlanner

Module

The LocalPlanner module generates velocity commands to keep the robot on a given path or to reach a certain goal
which is in reach. Usually the given path is generated by the HybridPlanner and depending on configuration further
optimized by the LocalPlanner.

Most functions require a special permission, see pilot.permission_e.

Functions

Common Parameters

goal_options_t options Optional goal options, see pilot.goal_options_t. If not specified will use default
values.

Hash64 job Optional job id, to identify the new goal. If not specified (or set to zero) will generate a new random
id. See vnx.Hash64.

98 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

General Functions

Path2D *get_path() const
Returns the current original map path being followed, if any. See pilot.Path2D.

Path2D *get_optimized_path() const
Returns the current optimized map path being followed, if any. See pilot.Path2D.

LocalPlannerState get_state() const
Returns the current planner state. See pilot.LocalPlannerState.

Movement Functions

void pause(bool em_stop)
Will pause movement, similar to an EM stop, but with a soft decceleration. However, if em_stop is set to true
will perform an emergency stop. resume() needs to be called to continue with the current or any new goal.

void resume()
Will resume movement after having been paused, while adhering to acceleration limits.

void await_goal() const
Waits for the current goal to finish. If currently idle it returns immediately.

void await_goal_ex(Hash64 job) const
Waits for a specific goal to finish. Either the currently active or finished goal, or any in the future. If the specified
goal has already been reached in the past and subsequently been superseeded by another, this function will fail,
ie. it will wait forever. Ideally this function is called before setting the goal to be waited for.

void cancel_goal()
Will cancel any pending goal and bring the robot to an immediate stop. Requires permission MOVE.

void cancel_goal_await()
Same as cancel_goal() and then await_goal() in one call.

void set_path(Path2D *path, goal_options_t options)
Sets a new path to be followed and returns immediately. Any pending goal is canceled beforehand. The path
needs to be in map coordinates. See pilot.Path2D. Requires permission MOVE.

void update_path(Path2D *path, goal_options_t options)
Updates the current path to be followed without stopping or canceling the current goal. If the new path does
not include the current position (to within some tolerance) a failure will be issued. The path needs to be in map
coordinates and it’s job id needs to match the current job id. See pilot.Path2D. Requires permission MOVE.

void follow_path(Path2D *path, goal_options_t options)
Same as set_path(...) but will block until the goal is reached or canceled. See pilot.Path2D. Requires
permission MOVE.

void set_goal(PathPoint2D goal, goal_options_t options, Hash64 job)
Sets a new goal position, either relative to the current position or an absolute map position. The new goal
must be within reach, with a maximum distance depending on configuration, but usually around 1 m. See
pilot.PathPoint2D. Requires permission MOVE.

void move_to(PathPoint2D goal, goal_options_t options, Hash64 job)
Same as set_goal(...) but will block until the goal is reached or canceled. See pilot.PathPoint2D. Requires
permission MOVE.

3.4. Modules 99

PlatformPilot Documentation, Release 1.6.2

3.4.5 MapServer

Module

The MapServer module handles all grid maps (see Grid Map) and road maps (see Road Map) that are uploaded to the
platform. All uploaded maps are stored in a storage and can be retrieved at any time. Additionally, the currently active
grid map and road map are remembered across restarts.

Maps are identified using a pilot.map_info_t object.

Some functions require permissions pilot.permission_e.CHANGE_GRIDMAP or pilot.permission_e.
CHANGE_ROADMAP, see pilot.permission_e.

Functions

OccupancyMapData *get_grid_map() const
Returns the currently active grid map.

RoadMapData *get_road_map() const
Returns the currently active road map.

void set_grid_map(OccupancyMapData *map)
Uploads a grid map to the map storage and immediately uses it for navigation.

Requires permission permission_e.CHANGE_GRIDMAP.

void switch_grid_map(map_info_t map_info)
Switches the current grid map for a different one from the map storage.

Requires permission permission_e.CHANGE_GRIDMAP.

OccupancyMapData *download_grid_map(map_info_t map_info) const
Returns the grid map identified by the map_info from the map storage.

void delete_grid_map(map_info_t map_info)
Deletes the given grid map from the map storage. If the map is the currently active map, it stays active.

vector<map_info_t> get_grid_maps_info() const
Returns a list of all grid maps present in the map storage.

void set_road_map(RoadMapData *map)
Uploads a road map to the map storage and immediately uses it for navigation.

Requires permission permission_e.CHANGE_ROADMAP.

void switch_road_map(map_info_t map_info)
Switches the current road map for a different one from the map storage.

Requires .ermission permission_e.CHANGE_ROADMAP.

RoadMapData *download_road_map(map_info_t map_info) const
Returns the road map identified by the map_info from the map storage.

void delete_road_map(map_info_t map_info)
Deletes the given road map from tche map storage. If the map is the currently active map, it stays active.

vector<map_info_t> get_road_maps_info() const
Returns a list of all road maps present in the map storage.

100 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.4.6 PilotServer

Module

The PilotServer module is the control center of the robot, it handles switching between different modes such as
mapping and navigation or automatic drive mode and teleoperation. In addition it allows to initialize the localization
as well as start / stop a data recording.

Most functions require a special permission, see pilot.permission_e.

Functions

PilotState get_state() const
Returns the current pilot state, see pilot.PilotState.

PlatformInfo get_platform_info() const
Returns platform info, see pilot.PlatformInfo.

void set_pose_estimate(Vector3d pose, long time)
Initializes the localization by providing a pose estimate (x, y, yaw) [m, m, rad] in map coordinates. Optionally
a time stamp can be provided in [usec]. See math.Vector3d. Requires permission INITIALIZE.

void switch_pilot_mode(pilot_mode_e new_mode, Object config, bool keep_motion_mode = false)
Switches the current pilot mode to new_mode. Platform has to be stationary. Optionally a user config can
be provided with config, overriding default values. If keep_motion_mode is set to true, the current
motion mode will not be changed automatically. See pilot.pilot_mode_e and vnx.Object. Requires permission
REMOTE_CONTROL.

void switch_motion_mode(motion_mode_e new_mode)
Switches the current motion mode to new_mode. Platform has to be stationary. See pilot.motion_mode_e.
Requires permission REMOTE_CONTROL.

void switch_footprint(Footprint footprint)
Sets a new footprint to use. Platform has to be stationary. See pilot.Footprint. Requires permission
REMOTE_CONTROL.

void start_recording(string file_name)
Starts a new data recording using the optional file name file_name. The recording will end up in the ~/
pilot/user/data/ folder. If file_name is empty a default name will be chosen. In any case a timestamp
will be appended to the file name to make it unique. Requires permission RECORD_DATA.

void stop_recording()
Stops the current data recording process. Requires permission RECORD_DATA.

3.4.7 PlatformInterface

Interface

The PlatformInterface is an interface to the hardware abstraction module running on a platform. It allows access to
hardware features such as digital inputs / outputs, analog inputs, power relays and the LCD.

Most functions require a special permission, see pilot.permission_e.

3.4. Modules 101

PlatformPilot Documentation, Release 1.6.2

Functions

Charging Functions

void charge()
Attempts to charge the platform’s batteries when connected to a charging station. Will return upon completion
of charging process. In case of an error (such as no contact to the charging station) an exception will be thrown.
Requires permission CHARGE.

void start_charging()
Attempts to start the charging process at a charging station. Returns immediately in case of success, or throws
an exception. Requires permission CHARGE.

void stop_charging()
Stops the charging process at a charging station. Returns immediately in case of success, or throws an exception.
Requires permission CHARGE.

Input / Output Functions

void set_relay(int channel, bool state)
Switch a relay on or off, depending on state. channel is an index from 0 to 3 (in most cases) denoting the
relay to switch. Requires permission RELAY_CONTROL.

void set_digital_output(int channel, bool state)
Switches a digital output to the specified state. channel is an index from 0 to 15 (in most cases) denoting
the output pin. Requires permission RELAY_CONTROL as well as an installed IOBoard.

void set_display_text(string line)
Sets the first line on the LCD to the given text, for the next 30 seconds. Requires permission
DISPLAY_CONTROL.

float read_analog_input(int channel)
Reads the voltage of an analog input in [V].

bool read_digital_input(int channel)
Reads the state of a digital input.

void wait_for_digital_input(int channel, bool state)
Waits for a digitial input to reach the specified state. If it’s already reached will return immediately. channel
is an index from 0 to 15 (in most cases) denoting the input pin. Requires permission CONST_REQUEST as well
as an installed IOBoard.

Other Functions

void shutdown()
Will terminate the process, shutdown the machine and turn off the platform. Cannot be undone except by turning
on the platform by hand again. Requires permission SHUTDOWN_HOST, see vnx.permission_e.

3.4.8 RoadMapPlanner

Module

The RoadMapPlanner module provides navigation support based on a Road Map.

Most functions require a special permission, see pilot.permission_e.

102 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

Functions

Common Parameters

goal_options_t options Optional goal options, see pilot.goal_options_t. If not specified will use default
values.

Hash64 job Optional job id, to identify the new goal. If not specified (or set to zero) will generate a new random
id. See vnx.Hash64.

General Functions

RoadMapData *get_road_map() const
Returns the currently used Road Map, if any. See pilot.RoadMapData.

MapStation *find_station(string name) const
Returns the corresponding map station by that name, if any. See pilot.MapStation.

MapStation *find_closest_station(double max_distance, Pose2D *position) const
Returns the map station closest to position in a radius of at most max_distance meters. position
defaults to the current position if known.

Movement Functions

void set_goal_station(string name, goal_options_t options, Hash64 job)
Sets a new goal using the provided station name and returns immediately. Any pending goals are canceled
beforehand. The station must exist in the current Road Map. Requires permission MOVE.

void move_to_station(string name, goal_options_t options, Hash64 job)
Same as set_goal_station(...) but will block until goal is reached or canceled. Requires permission
MOVE.

3.4.9 TaskHandler

Module

The TaskHandler module allows the execution of a sequence of tasks, specified by a Lua script, which can either be
written by hand or generated by using the graphical programming interface TaskEditor.

See Lua Script for more information on how to write a script by hand.

Most functions require a special permission, see pilot.permission_e.

Functions

Common Parameters

Hash64 jobid Optional job id, to identify a new program execution. If not specified (or set to zero) will generate
a new random id. See vnx.Hash64.

3.4. Modules 103

PlatformPilot Documentation, Release 1.6.2

Execute Functions

The following functions will cancel any running program beforehand, start to execute the new program and return
immediately.

void execute_file(string filename, vector<Variant> params, Hash64 jobid, bool blocking)
Starts to execute the specified Lua script file, i.e. executes its main function with the given parameters.
The filename is relative to the pilot home folder, e.g. ~/pilot/. If blocking is set to true, the
call blocks until the program is finished or aborted, otherwise it returns immediately. Requires permission
EXECUTE_SCRIPT.

void execute_program(string program, vector<Variant> params, Hash64 jobid, bool blocking)
Starts to execute the given Lua script code, i.e. executes its main function with the given parameters. If
blocking is set to true, the call blocks until the program is finished or aborted, otherwise it returns im-
mediately. Requires permission UPLOAD_SCRIPT.

Intervene Functions

void cancel_program()
Will cancel a running program at the next opportunity, usually after finishing the current task. Requires permis-
sion INTERVENE_SCRIPT.

void pause_program()
Will pause a running program at the next opportunity, usually after finishing the current task. Requires permis-
sion INTERVENE_SCRIPT.

void resume_program()
Will resume executing a paused program. Requires permission INTERVENE_SCRIPT.

3.4.10 vnx.JRPC_Proxy

Module

The vnx.JRPC_Proxy module provides a way to connect to another vnx.JRPC_Server.

This module and the vnx.Proxy module share the same base and are largely identical in handling.

Options

The options are identical to vnx.Proxy.

Methods

The module has all methods of vnx.Proxy and additionally the following ones.

void select_service(string service_name)
For the rest of the connection, all method calls by JSON-RPC Interface that do not specify a module will be
directed to service_name.

Supply an empty string or . to reset it to the proxy module itself.

104 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

3.4.11 vnx.JRPC_Server

Module

The vnx.JRPC_Server module provides a JSON RPC server to interface with the running process.

On the other end a vnx.JRPC_Proxy is needed to connect with the server.

This module and the vnx.Server module share the same base and are largely identical in handling.

Options

Identical to vnx.Server.

3.4.12 vnx.Proxy

Module

The vnx.Proxy module provides a way to connect to another vnx.Server.

Options

string address
URL to connect to, for example localhost:1234 (TCP/IP) or /tmp/mysocket.sock for a UNIX
socket. If no TCP port is specifed (ie. localhost) a default port of 4444 is used. If no IP address is
specified (ie. :1234) a default of localhost is used.

vector<string> import_list
List of topics to import from the sever.

vector<string> export_list
List of topics to export to the server.

vector<string> forward_list
List of services to forward to the server. Usually a service is a module’s name. Requests to these services are
then sent to the server who will forward them to the actual modules processing them. Return messages are
automatically routed back to the clients.

map<Hash64, string> tunnel_map
Same as forward_list but with a different service address locally [local alias => remote service name]. Will
forward requests on the Hash64 address to the string service on the server. string service names are
converted to a Hash64 address internally. See vnx.Hash64.

map<string, string> import_map
Same as import_list but will map to a different topic name locally. [remote name -> local name]

map<string, string> export_map
Same as export_list but will map to a different topic name on the server. [local name -> remote name]

bool auto_import = false
If to import all subscribed to topics from the server. Only used in special cases, since most of the time it leads
to network loops.

bool time_sync = false
If to syncronize local virtual time with the server. Same as importing the vnx.time_sync topic.
vnx::get_time_*() functions will then return a time which is in sync with the server.

3.4. Modules 105

PlatformPilot Documentation, Release 1.6.2

bool block_until_connect = true
If to block client requests until first sucessful connect.

bool block_until_reconnect = false
If to block client requests until next sucessful reconnect, in case connection breaks down.

int max_queue_ms = 100
Maximum queue length in [ms] for receiving data internally, 0 = unlimited. If the network is overloaded at most
this amount of data (in terms of latency) will be buffered internally before starting to drop messages. This queue
is in addition to the internal TCP send buffer.

int max_queue_size = 1000
Maximum queue size in [number of messages] for receiving data internally, 0 = unlimited. Similar to
max_queue_ms.

int recv_buffer_size = 0
TCP receive buffer size (0 = default) [bytes]

int send_buffer_size = 131072
TCP send buffer size, bigger equals more latency in case of network overload. (0 = default) [bytes]

string default_access = "DEFAULT"
Default access level for anonymous clients, see User Management. Only if use_authentication = true, otherwise
there are no restrictions, ie. full permissions to any user.

3.4.13 vnx.Server

Module

The vnx.Server module provides a VNX server to interface with the running process.

On the other end a vnx.Proxy is needed to connect with the server.

Options

string address
URL to bind to, for example 0.0.0.0:1234 (TCP/IP) or /tmp/mysocket.sock for a UNIX socket.
UNIX sockets need to have a file ending of *.sock. If no TCP port is specifed (ie. 0.0.0.0) a default port
of 4444 is used. If no IP address is specified (ie. :1234) a default of localhost is used.

bool use_authentication = false
If to require user authentication (login) to gain more persmissions than default_access. If set to false
any user has full permissions and no login is necessary.

vector<string> export_list
List of topics to automatically export to all clients without them asking for it. Samples published on these topics
are forwarded to all clients and re-published there.

int max_queue_ms = 100
Maximum queue length in [ms] for receiving data internally, 0 = unlimited. If the network is overloaded at most
this amount of data (in terms of latency) will be buffered internally before starting to drop messages. This queue
is in addition to the internal TCP send buffer.

int max_queue_size = 1000
Maximum queue size in [number of messages] for receiving data internally, 0 = unlimited. Similar to
max_queue_ms.

106 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

int recv_buffer_size = 0
TCP receive buffer size (0 = default) [bytes]

int send_buffer_size = 131072
TCP send buffer size, bigger equals more latency in case of network overload. (0 = default) [bytes]

string default_access = "DEFAULT"
Default access level for anonymous clients, see User Management. Only if use_authentication = true, otherwise
there are no restrictions, ie. full permissions to any user.

3.4.14 vnx.opc_ua.Proxy

Module

The vnx.opc_ua.Proxy module provides a OPC-UA proxy to connect to a OPC-UA server.

It allows to call methods as well as read variables on the server.

Options

string address
OPC-UA server url to connect to, for example opc.tcp://127.0.0.1:4840.

string username
Optional user name for server login.

string password
Password for server login, required when username is set.

int connect_interval_ms = 1000
Interval to check for connection loss and reconnect. 0 to disable.

int session_timeout_ms = 86400000
Session timeout in ms.

int keepalive_interval_ms = 10000
Connectivity check interval in ms.

int secure_channel_lifetime_ms = 600000
Secure channel life time in ms.

string certificate_file = ""
Optional path to a client certificate file (DER format).

string private_key_file = ""
Optional path to a client private key file (DER format).

string application_name = "pilot.opc_ua.proxy"
Optional application name.

string application_uri = "urn:open62541.client.application"
Must match the URI in the certificate.

vector<string> trust_list
Server certificate trust files (CRL format). This only has an effect if a client certificate is configured.

security_mode_e security_mode = ANY
Required security for connections. See vnx.opc_ua.security_mode_e.

3.4. Modules 107

PlatformPilot Documentation, Release 1.6.2

vector<subscription_t> subscriptions
A list of subscriptions to create on connect. See vnx.opc_ua.subscription_t.

bool block_until_connect = true
If to block client requests until first sucessful connect.

bool block_until_reconnect = false
If to block client requests until next sucessful reconnect, in case connection breaks down.

Functions

UA node ids are provided via a pair<ushort, Variant>, where the first value is the namespace index and the
second value either an integer or a string.

In case a UA method returns more than one value the Variant return value will contain an array of variants, ie.
vector<Variant>. See also vnx.Variant.

Variant call(string method, vector<Variant> args) const
Calls a global method with the given arguments and returns the result. The implicit object for this call is
UA_NS0ID_OBJECTSFOLDER. Requires permission vnx.opc_ua.permission_e.CALL.

Variant object_call(pair<ushort, Variant> object, string method, vector<Variant> args) const
Calls a method on the object with the given arguments and returns the result. Requires permission vnx.
opc_ua.permission_e.CALL.

Variant read_variable(pair<ushort, Variant> node) const
Reads the value of a given variable node.

Variant read_object_variable(pair<ushort, Variant> object, string variable) const
Reads the value of a given variable of the object.

void write_variable(pair<ushort, Variant> node, Variant value)
Writes a value to the given global variable node. Requires permission vnx.opc_ua.permission_e.
WRITE.

void write_object_variable(pair<ushort, Variant> object, string variable, Variant value)
Writes a value to the given variable of the object. Requires permission vnx.opc_ua.
permission_e.WRITE.

void browse_all()
Finds all available objects and variables on the server. Will be done automatically on every connect and re-
connect.

3.4.15 vnx.opc_ua.Server

Module

The vnx.opc_ua.Server module provides a OPC-UA server to interface with the running process.

Depending on the configuration different modules and topics are offered on the OPC-UA interface.

Options

string custom_hostname
An optional custom host name.

uint port = 4840
The port number the server binds to.

108 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

set<string> export_services
List of modues to offer on the OPC-UA interface as objects.

set<string> export_topics
List of topics to offer on the OPC-UA interface as variables.

string certificate_file
Optional path to a server certificate file (DER format).

string private_key_file
Optional path to a server private key file (DER format).

string application_name = "pilot.opc_ua.server"
Optional application name.

string application_uri = "urn:open62541.server.application"
Must match the URI in the certificate.

vector<string> trust_list
Client certificate trust files (CRL format). This only has an effect if a server certificate is configured.

bool add_insecure_discovery = true
Allow discovery with security policy NONE even if not configured. This is necessary if you want a secure server
(i.e. no NONE policy) that can still be discovered by a client. If security policy NONE is configured, this option
has no effect.

vector<security_policy_e> security_policies
A list of the security/encryption policies to provide. Most policies require a certificate and a private key. See
vnx.opc_ua.security_policy_e

vector<pair<node_id_t, Variant>> variables
A list of writable variables to create. For each variable a vnx.opc_ua.node_id_t and an initial value is expected.
The type of the variable is guessed from the initial value.

map<string, node_id_t> error_variables
Create optional error variables for exported services where error messages from their method calls are published.
This can be necessary, since OPC-UA does not support returning error messages.

bool use_authentication
If to require authentication from clients. If set to false, any connected user has full permissions.

bool allow_anonymous_access
Allow access without authentication.

string default_access
Default access level for anonymous clients, see User Management. This only has an effect if
use_authentication is set to true.

3.5 Topics

Topics are names under which data samples are published. Any number of subscribers can then receive the published
data.

Topics are arranged in a tree and it is possible to subscribe to a whole sub-tree. For example a subscription to input
will receive samples from input.joy as well as input.velocity_cmd.

Topics do not have an assigned data type, but in most cases only a specific data type is published.

3.5. Topics 109

PlatformPilot Documentation, Release 1.6.2

3.5.1 input

input.joy [pilot.JoyData] Joystick input samples, published only when a Joystick is connected and controls are
operated.

input.velocity_cmd [pilot.VelocityCmd] Joystick velocity commands.

3.5.2 local_planner

local_planner.state [pilot.LocalPlannerState] LocalPlanner state updates.

local_planner.target_pose [pilot.Pose2D] LocalPlanner target pose updates.

3.5.3 localization

localization.map_tile [pilot.OccupancyMapData] Localization map tile, ie. current section of the Grid
Map.

localization.particles [pilot.PoseArray2D] Localization particle swarm in map coordinates.

localization.status [pilot.LocalizationStatus] Localization status updates.

3.5.4 mapping

mapping.grid_map [pilot.OccupancyMapData] New Grid Map created by mapping.

mapping.pose_graph [pilot.RoadMapData] Mapping pose graph.

3.5.5 movechain

movechain.status [pilot.MovechainStatus] MovechainHandler status updates.

3.5.6 navigation

navigation.footprint [pilot.Footprint] Platform footprint.

navigation.global_cost_map [pilot.CostMapData] Global cost map.

navigation.global_path [pilot.Path2D] Current global path in map coordinates.

navigation.grid_map [pilot.OccupancyMapData] Current Grid Map.

navigation.initial_pose [pilot.Pose2D] Pose estimates to intialize Localization.

navigation.local_cost_map [pilot.CostMapData] Local cost map.

navigation.local_cost_map_overlay [pilot.CostMapData] Local cost map with global cost map over-
layed.

navigation.local_path [pilot.Path2D] Current optimized local path in odom coordinates.

navigation.map_match [pilot.MapMatch] Current map match.

navigation.map_pose [pilot.Pose2D] Current map pose in map coordinates.

navigation.new_goal_pose [pilot.Pose2D] New goals can be published here.

navigation.new_grid_map [pilot.OccupancyMapData] New Grid Map can be published here.

110 Chapter 3. API Reference

PlatformPilot Documentation, Release 1.6.2

navigation.new_road_map [pilot.RoadMapData] New Road Map can be published here.

navigation.odom_pose [pilot.Pose2D] Current local pose in odom coordinates.

navigation.road_map [pilot.RoadMapData] Current Road Map.

navigation.velocity_cmd [pilot.VelocityCmd] Velocity commands from LocalPlanner.

3.5.7 network

network.beacons [pilot.Beacon] Beacons for fleet management.

3.5.8 platform

platform.battery_state [pilot.BatteryState] Battery state updates.

platform.emergency_state [pilot.EmergencyState] Emergency state updates.

platform.events [pilot.Event, pilot.Incident] Generic events.

platform.incidents [pilot.Incident] External incidents, to be handled by PilotServer.

platform.active_incidents [pilot.ActiveIncidents] List of currently active incidents.

platform.info [pilot.PlatformInfo] Static platform info.

platform.odometry [pilot.Odometry] Odometry samples.

platform.pilot_state [pilot.PilotState] Pilot state updats.

platform.system_state [pilot.SystemState] System state update.

platform.power_state [pilot.PowerState] System power state.

platform.velocity_cmd [pilot.VelocityCmd] Custom velocity commands.

3.5.9 sensors

sensors.point_cloud.* [pilot.PointCloud2D, pilot.LaserPointCloud] Laser point clouds in odom coordi-
nates.

3.5.10 task_handler

task_handler.current_task [pilot.ExecutionState] Current task being executed by TaskHandler module.

task_handler.current_event_task [pilot.ExecutionState] Current event task being executed by TaskHan-
dler module.

task_handler.execution_history [pilot.ExecutionHistory] Execution history of TaskHandler module.

task_handler.event_history [pilot.ExecutionHistory] Event execution history of TaskHandler module.

3.5.11 tf

tf.map.odom [pilot.Pose2D] Localization updates.

tf.odom.base_link [pilot.Odometry] Odometry samples.

3.5. Topics 111

PlatformPilot Documentation, Release 1.6.2

3.5.12 tfd.map

tfd.map.local_planner.target_pose [pilot.Pose2D] Same as local_planner.target_pose but in map co-
ordinates.

tfd.map.navigation.local_path [pilot.Pose2D] Same as navigation.local_path but in map coordinates.

tfd.map.sensors.point_cloud.* [pilot.Pose2D] Same as sensors.point_cloud.* but in map coordinates.

3.5.13 vnx

vnx.log_out [vnx.LogMsg] Terminal log messags.

vnx.module_info [vnx.ModuleInfo] Module info updates.

vnx.recorder_status [vnx.RecorderStatus] Status information of the data recorder, when active.

genindex

112 Chapter 3. API Reference

INDEX

A
auto_charge (C++ function), 45

B
basic::Transform3D::frame (C++ member), 56
basic::Transform3D::matrix (C++ member),

56
basic::Transform3D::parent (C++ member),

56
basic::Transform3D::time (C++ member), 56
block (C++ function), 45

C
call() (built-in function), 20
cancel_goal (C++ function), 43
charge (C++ function), 44

E
execute (C++ function), 47

F
find_closest_station (C++ function), 44
find_closest_station_name (C++ function), 45
find_station (C++ function), 44

G
get_battery_remaining (C++ function), 45
get_position (C++ function), 44
get_time_micros (C++ function), 44
get_time_millis (C++ function), 44
get_time_sec (C++ function), 44

I
is_charging (C++ function), 45

L
log_error (C++ function), 45
log_info (C++ function), 45
log_warn (C++ function), 45

M
move (C++ function), 43

move_to (C++ function), 43
move_to_position (C++ function), 42
move_to_station (C++ function), 42
move_towards (C++ function), 43

O
on_battery_critical (C++ function), 48
on_battery_low (C++ function), 48
on_digital_input_off (C++ function), 48
on_digital_input_on (C++ function), 48
on_em_reset (C++ function), 47
on_em_stop (C++ function), 47
on_joystick_button_pressed (C++ function),

47
on_joystick_button_released (C++ function),

47
on_keypad_button_pressed (C++ function), 47
on_keypad_button_released (C++ function), 47
on_scanner_stop (C++ function), 47
opc_ua_call (C++ function), 46
opc_ua_read (C++ function), 46
opc_ua_read_global (C++ function), 46
opc_ua_write (C++ function), 46
opc_ua_write_global (C++ function), 47

P
pilot::ActiveIncidents::events (C++ mem-

ber), 57
pilot::ActiveIncidents::time (C++ mem-

ber), 57
pilot::area_property_e::DANGER (C++ enu-

merator), 75
pilot::area_property_e::DARK (C++ enumer-

ator), 76
pilot::area_property_e::DIRTY_FLOOR

(C++ enumerator), 76
pilot::area_property_e::DRAFTY (C++ enu-

merator), 76
pilot::area_property_e::LOUD (C++ enumer-

ator), 76
pilot::area_property_e::NO_HUMANS (C++

enumerator), 75

113

PlatformPilot Documentation, Release 1.6.2

pilot::area_property_e::WET_FLOOR (C++
enumerator), 76

pilot::battery_code_e::CRITICAL (C++
enumerator), 76

pilot::battery_code_e::LOW (C++ enumera-
tor), 76

pilot::battery_code_e::OVERHEAT (C++
enumerator), 76

pilot::battery_type_e::AGM (C++ enumera-
tor), 76

pilot::battery_type_e::LFP (C++ enumera-
tor), 76

pilot::BatteryState::current (C++ mem-
ber), 57

pilot::BatteryState::remaining (C++ mem-
ber), 57

pilot::BatteryState::temperature (C++
member), 57

pilot::BatteryState::type (C++ member), 57
pilot::BatteryState::voltage (C++ mem-

ber), 57
pilot::Beacon::time (C++ member), 58
pilot::charging_state_e::ABORTED (C++

enumerator), 76
pilot::charging_state_e::BRAKES_OPEN

(C++ enumerator), 76
pilot::charging_state_e::EM_STOP (C++

enumerator), 76
pilot::charging_state_e::FINISHED (C++

enumerator), 76
pilot::charging_state_e::IS_CHARGING

(C++ enumerator), 76
pilot::charging_state_e::NO_CHARGER

(C++ enumerator), 76
pilot::charging_state_e::NOT_CHARGING

(C++ enumerator), 76
pilot::CostMapData::cost (C++ member), 58
pilot::CostMapData::cost_scale (C++ mem-

ber), 58
pilot::CostMapData::PROHIBITED (C++ mem-

ber), 58
pilot::CostMapData::to_float (C++ func-

tion), 58
pilot::CostMapData::to_rgba (C++ function),

58
pilot::CostMapData::to_rgba_image (C++

function), 58
pilot::CostMapData::to_rgba_mono (C++

function), 58
pilot::CostMapData::to_rgba_mono_image

(C++ function), 58
pilot::CostMapData::UNKNOWN (C++ member),

58
pilot::drive_flags_e::BACKWARD_OVERRIDE

(C++ enumerator), 77
pilot::drive_flags_e::DISABLE_ROTATION

(C++ enumerator), 77
pilot::drive_flags_e::DISABLE_WHEEL_RESET

(C++ enumerator), 77
pilot::drive_flags_e::FIXED_ORIENTATION

(C++ enumerator), 77
pilot::drive_flags_e::IGNORE_FOOTPRINT

(C++ enumerator), 77
pilot::drive_flags_e::OMNI_DIRECTIONAL

(C++ enumerator), 77
pilot::drive_flags_e::RESET_WHEELS (C++

enumerator), 77
pilot::drive_mode_e::DEFAULT (C++ enumer-

ator), 77
pilot::drive_mode_e::FREE_PATH_FOLLOW

(C++ enumerator), 77
pilot::drive_mode_e::FREE_ROAMING (C++

enumerator), 77
pilot::drive_mode_e::RELAXED_PATH_FOLLOW

(C++ enumerator), 77
pilot::drive_mode_e::STRICT_PATH_FOLLOW

(C++ enumerator), 77
pilot::em_stop_state_e::CONFIRMED (C++

enumerator), 78
pilot::em_stop_state_e::FREE (C++ enumer-

ator), 78
pilot::em_stop_state_e::STOPPED (C++

enumerator), 78
pilot::EmergencyState::is_button_stop

(C++ member), 59
pilot::EmergencyState::is_scanner_stop

(C++ member), 59
pilot::EmergencyState::state (C++ mem-

ber), 59
pilot::Event::event (C++ member), 59
pilot::Event::info (C++ member), 59
pilot::Event::time (C++ member), 59
pilot::event_code_e::EXECUTION_CANCELED

(C++ enumerator), 78
pilot::event_code_e::EXECUTION_PAUSED

(C++ enumerator), 78
pilot::event_code_e::EXECUTION_RESUMED

(C++ enumerator), 78
pilot::event_code_e::GOAL_CANCELED (C++

enumerator), 78
pilot::event_code_e::GOAL_REACHED (C++

enumerator), 78
pilot::event_code_e::NEW_GOAL (C++ enu-

merator), 78
pilot::event_code_e::NEW_TASK (C++ enu-

merator), 78
pilot::event_code_e::TASK_COMPLETED

(C++ enumerator), 78

114 Index

PlatformPilot Documentation, Release 1.6.2

pilot::event_code_e::TASK_FAILED (C++
enumerator), 78

pilot::event_t::code (C++ member), 78
pilot::event_t::code_type (C++ member), 78
pilot::event_t::module (C++ member), 78
pilot::event_t::type (C++ member), 78
pilot::event_type_e::ERROR (C++ enumera-

tor), 79
pilot::event_type_e::NOTIFICATION (C++

enumerator), 79
pilot::event_type_e::WARNING (C++ enumer-

ator), 79
pilot::execution_state_e::CANCELED (C++

enumerator), 79
pilot::execution_state_e::FINISHED (C++

enumerator), 79
pilot::execution_state_e::PAUSED (C++

enumerator), 79
pilot::execution_state_e::RUNNING (C++

enumerator), 79
pilot::ExecutionHistory::history (C++

member), 59
pilot::ExecutionState::is_minor (C++

member), 60
pilot::ExecutionState::jobid (C++ mem-

ber), 60
pilot::ExecutionState::program_name

(C++ member), 60
pilot::ExecutionState::stack (C++ mem-

ber), 60
pilot::ExecutionState::status (C++ mem-

ber), 60
pilot::ExecutionState::task (C++ member),

60
pilot::ExecutionState::time_ended (C++

member), 60
pilot::ExecutionState::time_started

(C++ member), 60
pilot::float_param_t::type (C++ member),

79
pilot::float_param_t::value (C++ member),

79
pilot::Footprint::points (C++ member), 60
pilot::GlobalPlanner::move_to (C++ func-

tion), 96
pilot::GlobalPlanner::set_goal (C++ func-

tion), 95
pilot::goal_options_t::drive_flags (C++

member), 80
pilot::goal_options_t::drive_mode (C++

member), 80
pilot::goal_options_t::max_time_stuck

(C++ member), 80
pilot::goal_options_t::max_velocity

(C++ member), 80
pilot::goal_options_t::planner_mode

(C++ member), 80
pilot::GridMapData::get_frame_to_grid

(C++ function), 61
pilot::GridMapData::get_grid_to_frame

(C++ function), 61
pilot::GridMapData::get_info (C++ func-

tion), 61
pilot::GridMapData::last_modified (C++

member), 61
pilot::GridMapData::name (C++ member), 61
pilot::GridMapData::orientation (C++

member), 61
pilot::GridMapData::origin (C++ member),

61
pilot::GridMapData::same_as (C++ function),

61
pilot::GridMapData::scale (C++ member), 61
pilot::GridMapData::transform (C++ func-

tion), 61
pilot::HttpProxy::multi_request (C++

function), 96
pilot::HttpProxy::publish (C++ function), 96
pilot::HybridPlanner::append_goal (C++

function), 97
pilot::HybridPlanner::append_goal_position

(C++ function), 97
pilot::HybridPlanner::append_goal_positions

(C++ function), 98
pilot::HybridPlanner::append_goal_station

(C++ function), 97
pilot::HybridPlanner::append_goal_stations

(C++ function), 98
pilot::HybridPlanner::append_goals (C++

function), 98
pilot::HybridPlanner::move_to (C++ func-

tion), 97
pilot::HybridPlanner::move_to_position

(C++ function), 97
pilot::HybridPlanner::move_to_positions

(C++ function), 98
pilot::HybridPlanner::move_to_station

(C++ function), 97
pilot::HybridPlanner::move_to_stations

(C++ function), 98
pilot::HybridPlanner::move_tos (C++ func-

tion), 98
pilot::HybridPlanner::set_goal (C++ func-

tion), 97
pilot::HybridPlanner::set_goal_position

(C++ function), 97
pilot::HybridPlanner::set_goal_positions

(C++ function), 97

Index 115

PlatformPilot Documentation, Release 1.6.2

pilot::HybridPlanner::set_goal_station
(C++ function), 97

pilot::HybridPlanner::set_goal_stations
(C++ function), 97

pilot::HybridPlanner::set_goals (C++
function), 97

pilot::Incident::is_active (C++ member),
61

pilot::Incident::is_cleared (C++ member),
61

pilot::Incident::timeout_ms (C++ member),
61

pilot::JoyData::axes (C++ member), 62
pilot::JoyData::buttons (C++ member), 62
pilot::keypad_state_t::break_release_button

(C++ member), 80
pilot::keypad_state_t::digital_input

(C++ member), 80
pilot::keypad_state_t::home_button (C++

member), 80
pilot::keypad_state_t::info_button (C++

member), 80
pilot::keypad_state_t::start_button

(C++ member), 80
pilot::keypad_state_t::stop_button (C++

member), 80
pilot::LaserPointCloud::intensity (C++

member), 62
pilot::limit_reason_e::ACCEL_MAX (C++

enumerator), 80
pilot::limit_reason_e::CURVE_LIMIT (C++

enumerator), 81
pilot::limit_reason_e::CUSTOM_MAX (C++

enumerator), 80
pilot::limit_reason_e::DEFAULT_MAX (C++

enumerator), 80
pilot::limit_reason_e::FINISHED (C++

enumerator), 81
pilot::limit_reason_e::GOAL_MAX (C++

enumerator), 81
pilot::limit_reason_e::LIMIT_AHEAD (C++

enumerator), 81
pilot::limit_reason_e::LOCAL_COST (C++

enumerator), 80
pilot::limit_reason_e::OBSTACLE (C++

enumerator), 81
pilot::limit_reason_e::ORIENTATION_DEVIATION

(C++ enumerator), 81
pilot::limit_reason_e::PATH_DEVIATION

(C++ enumerator), 80
pilot::limit_reason_e::STOPPING (C++

enumerator), 81
pilot::limit_reason_e::WAITING (C++ enu-

merator), 81

pilot::local_planner_state_e::ADJUSTING
(C++ enumerator), 81

pilot::local_planner_state_e::CANCELED
(C++ enumerator), 81

pilot::local_planner_state_e::FINISHED
(C++ enumerator), 81

pilot::local_planner_state_e::IDLE (C++
enumerator), 81

pilot::local_planner_state_e::LOST (C++
enumerator), 81

pilot::local_planner_state_e::ROTATING
(C++ enumerator), 81

pilot::local_planner_state_e::STUCK
(C++ enumerator), 81

pilot::local_planner_state_e::TRANSLATING
(C++ enumerator), 81

pilot::local_planner_state_e::TURNING
(C++ enumerator), 81

pilot::local_planner_state_e::WAITING
(C++ enumerator), 81

pilot::localization_mode_e::DEAD_RECKONING
(C++ enumerator), 82

pilot::localization_mode_e::INITIALIZING
(C++ enumerator), 82

pilot::localization_mode_e::LOST (C++
enumerator), 82

pilot::localization_mode_e::MODE_1D
(C++ enumerator), 82

pilot::localization_mode_e::MODE_1D_YAW
(C++ enumerator), 82

pilot::localization_mode_e::MODE_2D
(C++ enumerator), 82

pilot::localization_mode_e::MODE_2D_YAW
(C++ enumerator), 82

pilot::localization_mode_e::NO_INPUT
(C++ enumerator), 82

pilot::localization_mode_e::NO_MAP (C++
enumerator), 82

pilot::localization_mode_e::NO_ODOMETRY
(C++ enumerator), 82

pilot::localization_mode_e::NONE (C++
enumerator), 82

pilot::LocalizationStatus::mode (C++
member), 63

pilot::LocalizationStatus::num_points
(C++ member), 63

pilot::LocalizationStatus::num_points_total
(C++ member), 64

pilot::LocalizationStatus::score (C++
member), 64

pilot::LocalizationStatus::sensors (C++
member), 63

pilot::LocalizationStatus::std_dev (C++
member), 64

116 Index

PlatformPilot Documentation, Release 1.6.2

pilot::LocalizationStatus::update_rate
(C++ member), 63

pilot::LocalPlanner::await_goal (C++
function), 99

pilot::LocalPlanner::await_goal_ex (C++
function), 99

pilot::LocalPlanner::cancel_goal (C++
function), 99

pilot::LocalPlanner::cancel_goal_await
(C++ function), 99

pilot::LocalPlanner::follow_path (C++
function), 99

pilot::LocalPlanner::get_optimized_path
(C++ function), 99

pilot::LocalPlanner::get_path (C++ func-
tion), 99

pilot::LocalPlanner::get_state (C++ func-
tion), 99

pilot::LocalPlanner::move_to (C++ func-
tion), 99

pilot::LocalPlanner::pause (C++ function),
99

pilot::LocalPlanner::resume (C++ function),
99

pilot::LocalPlanner::set_goal (C++ func-
tion), 99

pilot::LocalPlanner::set_path (C++ func-
tion), 99

pilot::LocalPlanner::update_path (C++
function), 99

pilot::LocalPlannerState::goal (C++ mem-
ber), 62

pilot::LocalPlannerState::goal_options
(C++ member), 63

pilot::LocalPlannerState::is_backwards
(C++ member), 63

pilot::LocalPlannerState::is_restricted
(C++ member), 63

pilot::LocalPlannerState::job (C++ mem-
ber), 62

pilot::LocalPlannerState::path_history
(C++ member), 63

pilot::LocalPlannerState::path_length
(C++ member), 62

pilot::LocalPlannerState::path_time
(C++ member), 62

pilot::LocalPlannerState::point (C++
member), 62

pilot::LocalPlannerState::pos_error
(C++ member), 63

pilot::LocalPlannerState::progress (C++
member), 63

pilot::LocalPlannerState::state (C++
member), 63

pilot::LocalPlannerState::time_stuck
(C++ member), 63

pilot::LocalPlannerState::update_rate
(C++ member), 63

pilot::LocalPlannerState::velocity_reason
(C++ member), 63

pilot::LocalPlannerState::yaw_error
(C++ member), 63

pilot::LocalPlannerState::yawrate_reason
(C++ member), 63

pilot::map_info_t::description (C++ mem-
ber), 82

pilot::map_info_t::last_modified (C++
member), 82

pilot::map_info_t::name (C++ member), 82
pilot::map_info_t::same_as (C++ function),

82
pilot::MapArea::description (C++ member),

64
pilot::MapArea::flags (C++ member), 64
pilot::MapArea::name (C++ member), 64
pilot::MapArea::outline (C++ member), 64
pilot::MapArea::type (C++ member), 64
pilot::MapElement::group (C++ member), 64
pilot::MapElement::id (C++ member), 64
pilot::MapElement::profiles (C++ member),

64
pilot::MapMatch::areas (C++ member), 65
pilot::MapMatch::distance (C++ member), 65
pilot::MapMatch::is_valid (C++ member), 65
pilot::MapMatch::node (C++ member), 65
pilot::MapMatch::segment (C++ member), 65
pilot::MapNode::drive_flags (C++ member),

65
pilot::MapNode::name (C++ member), 65
pilot::MapNode::offset (C++ member), 65
pilot::MapNode::parent (C++ member), 65
pilot::MapNode::position (C++ member), 65
pilot::MapProfile::description (C++ mem-

ber), 65
pilot::MapProfile::name (C++ member), 65
pilot::MapProfile::node (C++ member), 66
pilot::MapProfile::segment (C++ member),

66
pilot::MapProfile::station (C++ member),

66
pilot::MapServer::delete_grid_map (C++

function), 100
pilot::MapServer::delete_road_map (C++

function), 100
pilot::MapServer::download_grid_map

(C++ function), 100
pilot::MapServer::download_road_map

(C++ function), 100

Index 117

PlatformPilot Documentation, Release 1.6.2

pilot::MapServer::get_grid_map (C++ func-
tion), 100

pilot::MapServer::get_grid_maps_info
(C++ function), 100

pilot::MapServer::get_road_map (C++ func-
tion), 100

pilot::MapServer::get_road_maps_info
(C++ function), 100

pilot::MapServer::set_grid_map (C++ func-
tion), 100

pilot::MapServer::set_road_map (C++ func-
tion), 100

pilot::MapServer::switch_grid_map (C++
function), 100

pilot::MapServer::switch_road_map (C++
function), 100

pilot::MapStation::goal_tolerance (C++
member), 66

pilot::MapStation::goal_tune_time (C++
member), 66

pilot::MapStation::orientation (C++ mem-
ber), 66

pilot::motion_mode_e::AUTOMATIC (C++
enumerator), 83

pilot::motion_mode_e::CUSTOM (C++ enumer-
ator), 83

pilot::motion_mode_e::JOYSTICK (C++ enu-
merator), 83

pilot::motion_mode_e::NONE (C++ enumera-
tor), 83

pilot::OccupancyMapData::DYNAMIC (C++
member), 66

pilot::OccupancyMapData::FREE (C++ mem-
ber), 66

pilot::OccupancyMapData::occupancy (C++
member), 66

pilot::OccupancyMapData::PROHIBITED
(C++ member), 66

pilot::OccupancyMapData::to_combined_map
(C++ function), 67

pilot::OccupancyMapData::to_float (C++
function), 67

pilot::OccupancyMapData::to_mono_image
(C++ function), 67

pilot::OccupancyMapData::to_reflector_map
(C++ function), 67

pilot::OccupancyMapData::to_rgba (C++
function), 67

pilot::OccupancyMapData::to_rgba_image
(C++ function), 67

pilot::OccupancyMapData::UNKNOWN (C++
member), 66

pilot::Odometry::angular_velocity (C++
member), 67

pilot::Odometry::linear_velocity (C++
member), 67

pilot::Odometry::orientation (C++ mem-
ber), 67

pilot::Odometry::position (C++ member), 67
pilot::orientation_mode_e::ABSOLUTE_MAP

(C++ enumerator), 83
pilot::orientation_mode_e::RELATIVE_ROAD

(C++ enumerator), 83
pilot::param_type_e::CUSTOM (C++ enumera-

tor), 83
pilot::param_type_e::DEFAULT (C++ enumer-

ator), 83
pilot::param_type_e::DISABLED (C++ enu-

merator), 83
pilot::param_type_e::IGNORE (C++ enumera-

tor), 83
pilot::param_type_e::OPTIMIZED (C++ enu-

merator), 83
pilot::Path2D::job (C++ member), 67
pilot::Path2D::points (C++ member), 67
pilot::PathPoint2D::drive_flags (C++

member), 68
pilot::PathPoint2D::drive_mode (C++ mem-

ber), 68
pilot::PathPoint2D::goal_tune_time (C++

member), 68
pilot::PathPoint2D::is_restricted (C++

member), 68
pilot::PathPoint2D::map_id (C++ member),

68
pilot::PathPoint2D::max_velocity (C++

member), 68
pilot::PathPoint2D::max_yawrate (C++

member), 68
pilot::PathPoint2D::orientation (C++

member), 68
pilot::PathPoint2D::tolerance (C++ mem-

ber), 68
pilot::permission_e::CHANGE_GRIDMAP

(C++ enumerator), 84
pilot::permission_e::CHANGE_ROADMAP

(C++ enumerator), 84
pilot::permission_e::CHARGE (C++ enumera-

tor), 84
pilot::permission_e::DISPLAY_CONTROL

(C++ enumerator), 84
pilot::permission_e::EXECUTE_SCRIPT

(C++ enumerator), 84
pilot::permission_e::INITIALIZE (C++

enumerator), 84
pilot::permission_e::INTERVENE_SCRIPT

(C++ enumerator), 84
pilot::permission_e::MOVE (C++ enumerator),

118 Index

PlatformPilot Documentation, Release 1.6.2

83
pilot::permission_e::RECORD_DATA (C++

enumerator), 84
pilot::permission_e::RELAY_CONTROL (C++

enumerator), 84
pilot::permission_e::REMOTE_CONTROL

(C++ enumerator), 84
pilot::permission_e::UPLOAD_SCRIPT (C++

enumerator), 84
pilot::pilot_mode_e::MAPPING (C++ enumer-

ator), 84
pilot::pilot_mode_e::NAVIGATION (C++

enumerator), 84
pilot::pilot_mode_e::REPLAY (C++ enumera-

tor), 84
pilot::pilot_mode_e::TELEOP (C++ enumera-

tor), 84
pilot::PilotServer::get_platform_info

(C++ function), 101
pilot::PilotServer::get_state (C++ func-

tion), 101
pilot::PilotServer::set_pose_estimate

(C++ function), 101
pilot::PilotServer::start_recording

(C++ function), 101
pilot::PilotServer::stop_recording (C++

function), 101
pilot::PilotServer::switch_footprint

(C++ function), 101
pilot::PilotServer::switch_motion_mode

(C++ function), 101
pilot::PilotServer::switch_pilot_mode

(C++ function), 101
pilot::PilotState::execution (C++ mem-

ber), 69
pilot::PilotState::incidents (C++ mem-

ber), 69
pilot::PilotState::is_recording (C++

member), 69
pilot::PilotState::localization (C++

member), 69
pilot::PilotState::motion_mode (C++ mem-

ber), 69
pilot::PilotState::pilot_mode (C++ mem-

ber), 69
pilot::PilotState::pilot_version (C++

member), 68
pilot::PilotState::planner (C++ member),

69
pilot::PilotState::robot_id (C++ member),

68
pilot::PilotState::time (C++ member), 68
pilot::platform_type_e::MP_400 (C++ enu-

merator), 84

pilot::platform_type_e::MP_500 (C++ enu-
merator), 85

pilot::platform_type_e::MPO_500 (C++
enumerator), 85

pilot::platform_type_e::MPO_700 (C++
enumerator), 85

pilot::PlatformInfo::date_of_manufacture
(C++ member), 69

pilot::PlatformInfo::features (C++ mem-
ber), 69

pilot::PlatformInfo::name (C++ member), 69
pilot::PlatformInfo::serial (C++ member),

69
pilot::PlatformInfo::type (C++ member), 69
pilot::PlatformInterface::charge (C++

function), 102
pilot::PlatformInterface::read_analog_input

(C++ function), 102
pilot::PlatformInterface::read_digital_input

(C++ function), 102
pilot::PlatformInterface::set_digital_output

(C++ function), 102
pilot::PlatformInterface::set_display_text

(C++ function), 102
pilot::PlatformInterface::set_relay

(C++ function), 102
pilot::PlatformInterface::shutdown (C++

function), 102
pilot::PlatformInterface::start_charging

(C++ function), 102
pilot::PlatformInterface::stop_charging

(C++ function), 102
pilot::PlatformInterface::wait_for_digital_input

(C++ function), 102
pilot::PointCloud2D::base_to_odom (C++

member), 70
pilot::PointCloud2D::field (C++ member),

70
pilot::PointCloud2D::points (C++ member),

70
pilot::PointCloud2D::sensor (C++ member),

70
pilot::PointCloud2D::sensor_to_base

(C++ member), 70
pilot::polygon_t::frame (C++ member), 85
pilot::polygon_t::points (C++ member), 85
pilot::Pose2D::covariance (C++ member), 70
pilot::Pose2D::pose (C++ member), 70
pilot::PoseArray2D::poses (C++ member), 70
pilot::PoseArray2D::transform (C++ func-

tion), 70
pilot::power_system_type_e::POWER_24V

(C++ enumerator), 85
pilot::power_system_type_e::POWER_48V

Index 119

PlatformPilot Documentation, Release 1.6.2

(C++ enumerator), 85
pilot::PowerState::charging_state (C++

member), 71
pilot::PowerState::is_charging (C++ mem-

ber), 71
pilot::PowerState::power_system_type

(C++ member), 71
pilot::RelayBoardData::ambient_temperature

(C++ member), 71
pilot::RelayBoardData::keypad_state

(C++ member), 71
pilot::RelayBoardData::relay_states

(C++ member), 71
pilot::RoadMapData::areas (C++ member), 72
pilot::RoadMapData::last_modified (C++

member), 71
pilot::RoadMapData::name (C++ member), 71
pilot::RoadMapData::nodes (C++ member), 71
pilot::RoadMapData::profiles (C++ mem-

ber), 71
pilot::RoadMapData::segments (C++ mem-

ber), 71
pilot::RoadMapPlanner::find_closest_station

(C++ function), 103
pilot::RoadMapPlanner::find_station

(C++ function), 103
pilot::RoadMapPlanner::get_road_map

(C++ function), 103
pilot::RoadMapPlanner::move_to_station

(C++ function), 103
pilot::RoadMapPlanner::set_goal_station

(C++ function), 103
pilot::RoadSegment::direction (C++ mem-

ber), 72
pilot::RoadSegment::drive_flags (C++

member), 72
pilot::RoadSegment::drive_mode (C++ mem-

ber), 72
pilot::RoadSegment::from_node (C++ mem-

ber), 72
pilot::RoadSegment::max_velocity (C++

member), 72
pilot::RoadSegment::max_yawrate (C++

member), 72
pilot::RoadSegment::orientation (C++

member), 72
pilot::RoadSegment::orientation_mode

(C++ member), 72
pilot::RoadSegment::orientation_tolerance

(C++ member), 72
pilot::RoadSegment::to_node (C++ member),

72
pilot::RoadSegment::tolerance (C++ mem-

ber), 72

pilot::RobotInfo::battery_state (C++
member), 73

pilot::RobotInfo::emergency_state (C++
member), 73

pilot::RobotInfo::footprint (C++ member),
73

pilot::RobotInfo::grid_map (C++ member),
73

pilot::RobotInfo::id (C++ member), 73
pilot::RobotInfo::laser_scans (C++ mem-

ber), 73
pilot::RobotInfo::map_match (C++ member),

73
pilot::RobotInfo::map_path (C++ member),

73
pilot::RobotInfo::map_pose (C++ member),

73
pilot::RobotInfo::platform (C++ member),

73
pilot::RobotInfo::road_map (C++ member),

73
pilot::RobotInfo::state (C++ member), 73
pilot::RobotInfo::system_status (C++

member), 73
pilot::RobotInfo::velocity (C++ member),

73
pilot::safety_code_e::EMERGENCY_STOP

(C++ enumerator), 85
pilot::safety_code_e::NONE (C++ enumera-

tor), 85
pilot::safety_code_e::SCANNER_STOP (C++

enumerator), 85
pilot::Sample::frame (C++ member), 73
pilot::Sample::time (C++ member), 73
pilot::sensor_2d_range_t::add_margin

(C++ function), 86
pilot::sensor_2d_range_t::is_valid (C++

function), 86
pilot::sensor_2d_range_t::is_within

(C++ function), 86
pilot::sensor_2d_range_t::is_within_point

(C++ function), 86
pilot::sensor_2d_range_t::is_within_xy

(C++ function), 86
pilot::sensor_2d_range_t::max_angle

(C++ member), 86
pilot::sensor_2d_range_t::max_range

(C++ member), 86
pilot::sensor_2d_range_t::min_angle

(C++ member), 86
pilot::sensor_2d_range_t::min_range

(C++ member), 86
pilot::StackFrame::line_number (C++ mem-

ber), 74

120 Index

PlatformPilot Documentation, Release 1.6.2

pilot::StackFrame::method (C++ member), 74
pilot::system_error_e::BRAKE_RELEASE_BUTTON_ERROR

(C++ enumerator), 86
pilot::system_error_e::CHARGING_RELAY_ERROR

(C++ enumerator), 86
pilot::system_error_e::EM_STOP_SYSTEM_ERROR

(C++ enumerator), 86
pilot::system_error_e::MOTOR_ERROR (C++

enumerator), 86
pilot::system_error_e::POWER_RELAY_ERROR

(C++ enumerator), 86
pilot::system_error_e::SAFETY_RELAY_ERROR

(C++ enumerator), 86
pilot::SystemState::is_initialized (C++

member), 74
pilot::SystemState::is_shutdown (C++

member), 74
pilot::SystemState::system_errors (C++

member), 74
pilot::Task::args (C++ member), 74
pilot::Task::id (C++ member), 74
pilot::Task::method (C++ member), 74
pilot::Task::module (C++ member), 74
pilot::TaskHandler::cancel_program (C++

function), 104
pilot::TaskHandler::execute_file (C++

function), 104
pilot::TaskHandler::execute_program

(C++ function), 104
pilot::TaskHandler::pause_program (C++

function), 104
pilot::TaskHandler::resume_program (C++

function), 104
pilot::vector_3f_param_t::x (C++ member),

87
pilot::vector_3f_param_t::y (C++ member),

87
pilot::vector_3f_param_t::z (C++ member),

87
pilot::VelocityCmd::allow_wheel_reset

(C++ member), 75
pilot::VelocityCmd::angular (C++ member),

75
pilot::VelocityCmd::linear (C++ member),

75
pilot::VelocityCmd::reset_wheels (C++

member), 75
pilot::VelocityLimits::max_rot_vel (C++

member), 75
pilot::VelocityLimits::max_trans_vel

(C++ member), 75
pilot::VelocityLimits::max_vel_x (C++

member), 75
pilot::VelocityLimits::max_vel_y (C++

member), 75
pilot::VelocityLimits::min_rot_vel (C++

member), 75
pilot::VelocityLimits::min_trans_vel

(C++ member), 75
pilot::VelocityLimits::min_vel_x (C++

member), 75
pilot::VelocityLimits::rot_stopped_vel

(C++ member), 75
pilot::VelocityLimits::trans_stopped_vel

(C++ member), 75

R
read_analog_input (C++ function), 44
read_digital_input (C++ function), 44
require() (built-in function), 20
reset_motors (C++ function), 46
return() (built-in function), 23

S
set_digital_output (C++ function), 44
set_display_text (C++ function), 44
set_relay (C++ function), 44
set_timer_ms (C++ function), 44
start_charging (C++ function), 44
stop_charging (C++ function), 44
switch_grid_map (C++ function), 43

T
to_string() (built-in function), 23

U
unblock (C++ function), 45

V
vnx::access_role_e::ADMIN (C++ enumerator),

92
vnx::access_role_e::DEFAULT (C++ enumera-

tor), 91
vnx::access_role_e::INSTALLER (C++ enu-

merator), 92
vnx::access_role_e::OBSERVER (C++ enumer-

ator), 91
vnx::access_role_e::USER (C++ enumerator),

92
vnx::access_role_e::VIEWER (C++ enumera-

tor), 91
vnx::JRPC_Error::code (C++ member), 87
vnx::JRPC_Error::data (C++ member), 87
vnx::JRPC_Error::message (C++ member), 87
vnx::JRPC_Proxy::select_service (C++

function), 104
vnx::LogMsg::DEBUG (C++ member), 88

Index 121

PlatformPilot Documentation, Release 1.6.2

vnx::LogMsg::display_level (C++ member),
88

vnx::LogMsg::ERROR (C++ member), 88
vnx::LogMsg::get_output (C++ function), 88
vnx::LogMsg::INFO (C++ member), 88
vnx::LogMsg::level (C++ member), 88
vnx::LogMsg::message (C++ member), 88
vnx::LogMsg::module (C++ member), 88
vnx::LogMsg::process (C++ member), 88
vnx::LogMsg::time (C++ member), 88
vnx::LogMsg::WARN (C++ member), 88
vnx::ModuleInfo::get_cpu_load (C++ func-

tion), 89
vnx::ModuleInfo::get_cpu_load_total

(C++ function), 89
vnx::ModuleInfo::id (C++ member), 88
vnx::ModuleInfo::name (C++ member), 88
vnx::ModuleInfo::num_async_pending (C++

member), 89
vnx::ModuleInfo::num_async_process (C++

member), 89
vnx::ModuleInfo::pub_topics (C++ member),

89
vnx::ModuleInfo::remotes (C++ member), 89
vnx::ModuleInfo::src_mac (C++ member), 88
vnx::ModuleInfo::sub_topics (C++ member),

89
vnx::ModuleInfo::time (C++ member), 88
vnx::ModuleInfo::time_idle (C++ member),

88
vnx::ModuleInfo::time_idle_total (C++

member), 88
vnx::ModuleInfo::time_running (C++ mem-

ber), 88
vnx::ModuleInfo::time_running_total

(C++ member), 89
vnx::ModuleInfo::time_started (C++ mem-

ber), 88
vnx::ModuleInfo::type (C++ member), 88
vnx::ModuleInfo::type_code (C++ member),

89
vnx::opc_ua::DataChange::monitored_item_id

(C++ member), 93
vnx::opc_ua::DataChange::subscription_id

(C++ member), 93
vnx::opc_ua::DataChange::value (C++ mem-

ber), 93
vnx::opc_ua::monitored_item_t::discard_oldest

(C++ member), 93
vnx::opc_ua::monitored_item_t::id (C++

member), 93
vnx::opc_ua::monitored_item_t::monitor_changes

(C++ member), 93
vnx::opc_ua::monitored_item_t::monitoring_mode

(C++ member), 93
vnx::opc_ua::monitored_item_t::output_data

(C++ member), 93
vnx::opc_ua::monitored_item_t::queue_size

(C++ member), 93
vnx::opc_ua::monitored_item_t::sampling_interval

(C++ member), 93
vnx::opc_ua::monitoring_mode_e::DISABLED

(C++ enumerator), 93
vnx::opc_ua::monitoring_mode_e::REPORTING

(C++ enumerator), 93
vnx::opc_ua::monitoring_mode_e::SAMPLING

(C++ enumerator), 93
vnx::opc_ua::node_id_t::index (C++ mem-

ber), 94
vnx::opc_ua::node_id_t::name (C++ mem-

ber), 94
vnx::opc_ua::Proxy::address (C++ member),

107
vnx::opc_ua::Proxy::application_name

(C++ member), 107
vnx::opc_ua::Proxy::application_uri

(C++ member), 107
vnx::opc_ua::Proxy::block_until_connect

(C++ member), 108
vnx::opc_ua::Proxy::block_until_reconnect

(C++ member), 108
vnx::opc_ua::Proxy::browse_all (C++ func-

tion), 108
vnx::opc_ua::Proxy::call (C++ function), 108
vnx::opc_ua::Proxy::certificate_file

(C++ member), 107
vnx::opc_ua::Proxy::connect_interval_ms

(C++ member), 107
vnx::opc_ua::Proxy::keepalive_interval_ms

(C++ member), 107
vnx::opc_ua::Proxy::object_call (C++

function), 108
vnx::opc_ua::Proxy::password (C++ mem-

ber), 107
vnx::opc_ua::Proxy::private_key_file

(C++ member), 107
vnx::opc_ua::Proxy::read_object_variable

(C++ function), 108
vnx::opc_ua::Proxy::read_variable (C++

function), 108
vnx::opc_ua::Proxy::secure_channel_lifetime_ms

(C++ member), 107
vnx::opc_ua::Proxy::security_mode (C++

member), 107
vnx::opc_ua::Proxy::session_timeout_ms

(C++ member), 107
vnx::opc_ua::Proxy::subscriptions (C++

member), 107

122 Index

PlatformPilot Documentation, Release 1.6.2

vnx::opc_ua::Proxy::trust_list (C++ mem-
ber), 107

vnx::opc_ua::Proxy::username (C++ mem-
ber), 107

vnx::opc_ua::Proxy::write_object_variable
(C++ function), 108

vnx::opc_ua::Proxy::write_variable (C++
function), 108

vnx::opc_ua::security_mode_e::ANY (C++
enumerator), 94

vnx::opc_ua::security_mode_e::NONE (C++
enumerator), 94

vnx::opc_ua::security_mode_e::SIGN (C++
enumerator), 94

vnx::opc_ua::security_mode_e::SIGN_AND_ENCRYPT
(C++ enumerator), 94

vnx::opc_ua::security_policy_e::AES_128_SHA_256_RSA_OAEP
(C++ enumerator), 94

vnx::opc_ua::security_policy_e::BASIC_128_RSA_15
(C++ enumerator), 94

vnx::opc_ua::security_policy_e::BASIC_256
(C++ enumerator), 94

vnx::opc_ua::security_policy_e::BASIC_256_SHA_256
(C++ enumerator), 94

vnx::opc_ua::security_policy_e::NONE
(C++ enumerator), 94

vnx::opc_ua::Server::add_insecure_discovery
(C++ member), 109

vnx::opc_ua::Server::allow_anonymous_access
(C++ member), 109

vnx::opc_ua::Server::application_name
(C++ member), 109

vnx::opc_ua::Server::application_uri
(C++ member), 109

vnx::opc_ua::Server::certificate_file
(C++ member), 109

vnx::opc_ua::Server::custom_hostname
(C++ member), 108

vnx::opc_ua::Server::default_access
(C++ member), 109

vnx::opc_ua::Server::error_variables
(C++ member), 109

vnx::opc_ua::Server::export_services
(C++ member), 109

vnx::opc_ua::Server::export_topics (C++
member), 109

vnx::opc_ua::Server::port (C++ member),
108

vnx::opc_ua::Server::private_key_file
(C++ member), 109

vnx::opc_ua::Server::security_policies
(C++ member), 109

vnx::opc_ua::Server::trust_list (C++
member), 109

vnx::opc_ua::Server::use_authentication
(C++ member), 109

vnx::opc_ua::Server::variables (C++ mem-
ber), 109

vnx::opc_ua::subscription_t::lifetime
(C++ member), 95

vnx::opc_ua::subscription_t::max_keepalive
(C++ member), 95

vnx::opc_ua::subscription_t::max_notifications_per_publish
(C++ member), 95

vnx::opc_ua::subscription_t::monitored_items
(C++ member), 95

vnx::opc_ua::subscription_t::output_data
(C++ member), 95

vnx::opc_ua::subscription_t::priority
(C++ member), 95

vnx::opc_ua::subscription_t::publishing_enabled
(C++ member), 95

vnx::opc_ua::subscription_t::publishing_interval
(C++ member), 95

vnx::permission_e::CONST_REQUEST (C++
enumerator), 92

vnx::permission_e::HOST_SHUTDOWN (C++
enumerator), 92

vnx::permission_e::PROTECTED_CONFIG
(C++ enumerator), 92

vnx::permission_e::PUBLISH (C++ enumera-
tor), 92

vnx::permission_e::READ_CONFIG (C++ enu-
merator), 92

vnx::permission_e::REQUEST (C++ enumera-
tor), 92

vnx::permission_e::RESTART (C++ enumera-
tor), 92

vnx::permission_e::SELF_TEST (C++ enumer-
ator), 92

vnx::permission_e::SHUTDOWN (C++ enumera-
tor), 92

vnx::permission_e::START (C++ enumerator),
92

vnx::permission_e::STOP (C++ enumerator),
92

vnx::permission_e::VIEW (C++ enumerator),
92

vnx::permission_e::WRITE_CONFIG (C++
enumerator), 92

vnx::Proxy::address (C++ member), 105
vnx::Proxy::auto_import (C++ member), 105
vnx::Proxy::block_until_connect (C++

member), 105
vnx::Proxy::block_until_reconnect (C++

member), 106
vnx::Proxy::default_access (C++ member),

106

Index 123

PlatformPilot Documentation, Release 1.6.2

vnx::Proxy::export_list (C++ member), 105
vnx::Proxy::export_map (C++ member), 105
vnx::Proxy::forward_list (C++ member), 105
vnx::Proxy::import_list (C++ member), 105
vnx::Proxy::import_map (C++ member), 105
vnx::Proxy::max_queue_ms (C++ member), 106
vnx::Proxy::max_queue_size (C++ member),

106
vnx::Proxy::recv_buffer_size (C++ mem-

ber), 106
vnx::Proxy::send_buffer_size (C++ mem-

ber), 106
vnx::Proxy::time_sync (C++ member), 105
vnx::Proxy::tunnel_map (C++ member), 105
vnx::Server::address (C++ member), 106
vnx::Server::default_access (C++ member),

107
vnx::Server::export_list (C++ member), 106
vnx::Server::max_queue_ms (C++ member),

106
vnx::Server::max_queue_size (C++ member),

106
vnx::Server::recv_buffer_size (C++ mem-

ber), 106
vnx::Server::send_buffer_size (C++ mem-

ber), 107
vnx::Server::use_authentication (C++

member), 106
vnx::User::access_roles (C++ member), 90
vnx::User::hashed_password (C++ member),

90
vnx::User::name (C++ member), 90
vnx::User::permissions (C++ member), 90
void_switch_road_map (C++ function), 43

W
wait_for_digital_input (C++ function), 43
wait_for_joystick (C++ function), 43
wait_for_joystick_button (C++ function), 43
wait_for_keypad (C++ function), 43
wait_for_keypad_button (C++ function), 43
wait_hours (C++ function), 44
wait_min (C++ function), 44
wait_ms (C++ function), 44
wait_sec (C++ function), 44

124 Index

	User Manual
	Installation
	Running
	Docker
	Terminal Interface
	Configuration
	User Management
	Tools
	Grid Map
	Road Map
	GTK GUI
	WebGUI
	License
	Changelog

	Programmer’s Manual
	VNX Interface
	JSON-RPC Interface
	HTTP Interface
	Lua Script
	OPC-UA Interface
	ROS Bridge

	API Reference
	Common Datatypes
	Coordinate Systems
	Classes
	Modules
	Topics

	Index

